Fractional order theory of thermo-viscoelasticity and application

Springer Science and Business Media LLC - Tập 24 Số 2 - Trang 179-195 - 2020
Hany H. Sherief1, M. A. Elhagary2
1Department of Mathematics, University of Alexandria, Alexandria, Egypt
2Department of Mathematics, Damiatta University, New Damiatta, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adolfsson, K., Enelund, M.: Fractional derivative viscoelasticity at large deformations. Nonlinear Dyn. 33, 301–321 (2003)

Adolfsson, K., Enelund, M., Larsson, S.: Adaptive discretization of fractional order viscoelasticity using sparse time history. Comput. Methods Appl. Mech. Eng. 193, 4567–4590 (2004)

Bagley, R.L., Torvik, P.J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21, 741–748 (1983)

Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)

Caputo, M.: Vibrations on an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 56, 897–904 (1974)

Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971a)

Caputo, M., Mainardi, F.: Linear model of dissipation in an elastic solids. Riv. Nuovo Cimento 1, 161–198 (1971b)

Churchill, R.V.: Operational Mathematics, 3rd edn. McGraw-Hill, New York (1972)

Dhaliwal, R.S., Sherief, H.H.: Generalized thermoelasticity for anisotropic media. Q. Appl. Math. 33, 1–8 (1980)

Elhagary, M.A.: A thermo-mechanical shock problem for generalized theory of thermoviscoelasticity. Int. J. Thermophys. 34, 170–188 (2013)

Ezzat, M.A., El-Bary, A.A.: Fractional order theory to an infinite thermoviscoelastic body with a cylindrical cavity in the presence of an axial uniform magnetic field. J. Electromagn. Waves 31, 495–513 (2017)

Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A., Fayik, M.A.: Fractional calculus in one-dimensional isotropic thermo-viscoelasticity. C. R., Méc. 341, 553–566 (2013)

Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Thermo-viscoelastic materials with fractional relaxation operators. Appl. Math. Model. 39, 7499–7512 (2015)

Foutsitzi, G., Kalpakidis, V.K., Massalas, C.V.: On the existence and uniqueness in linear thermoviscoelasticity. Z. Angew. Math. Mech. 77, 33–44 (1996)

Fung, Y.C.: Foundations of Solid Mechanics. Prentice Hall, New Delhi (1965)

Gross, B.: Mathematical Structures of the Theories of Viscoelasticity. Hermann, Paris (1953)

Gurtin, M., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 11, 182–191 (1962)

Honig, G., Hirdes, U.: A method for the numerical inversion of the Laplace transform. J. Comput. Appl. Math. 10, 113–132 (1984)

Il’yushin, A.A.: Method of approximations for solving problems of the linear theory of thermoviscoelasticity. Mech. Compos. Mater. 4, 149–158 (1968)

Kovalenko, A.D., Karnaukhov, V.G.: A linearized theory of thermoviscoelasticty. Mech. Compos. Mater. 2, 194–199 (1972)

Li, N.T.: A method for solving the integrodifferential equations encountered in the dynamics of viscoelasticity. Mech. Compos. Mater. 14, 657–663 (1978)

Lord, H., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

Malyi, V.I.: An approximate method for solving viscoelasticity problems. Strength Mater. 8, 906–909 (1976)

Medri, G.: Coupled thermoviscoelasticity, a way to the stress-strain analysis of polymeric industrial components. Meccanica 23, 226–231 (1988)

Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

Oberhettinger, F., Badii, L.: Tables of Laplace Transforms. Springer, New York (1973)

Pobedrya, B.E.: Coupled problems in thermoviscoelasticity. Mech. Compos. Mater. 5, 353–358 (1969)

Povstenko, Y.Z.: Fractional heat conduction and associated thermal stress. J. Therm. Stresses 28, 83–102 (2005)

Povstenko, Y.Z.: Thermoelasticity that uses fractional heat conduction equation. J. Math. Sci. 162, 296–305 (2009)

Povstenko, Y.Z.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stresses 34, 97–114 (2011)

Raslan, W.: Application of fractional order theory of thermoelasticity in a thick plate under axisymmetric temperature distribution. J. Therm. Stresses 38, 733–743 (2015)

Raslan, W.: Application of fractional order theory of thermoelasticity to a 1D problem for a spherical shell. J. Theor. Appl. Mech. 54, 295–304 (2016)

Sherief, H., AbdEl-Latief, A.M.: Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity. Int. J. Mech. Sci. 74, 185–189 (2013)

Sherief, H., AbdEl-Latief, A.M.: Application of fractional order theory of thermoelasticity to a 1D problem for a half-space. Z. Angew. Math. Mech. 94, 509–515 (2014)

Sherief, H., El-Sayed, A.M.A., AbdEl-Latief, A.M.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47, 269–275 (2010)

Sherief, H., Allam, M., Elhagary, M.: Generalized theory of thermoviscoelasticity and a half-space problem. Int. J. Thermophys. 32, 1271–1295 (2011)

Sherief, H.H., Hamza, F.A., Abd El-Latief, A.M.: 2D problem for a half-space in the generalized theory of thermo-viscoelasticity. Mech. Time-Depend. Mater. 19, 557–568 (2015)

Stratonova, M.M.: A method of solving dynamic problems of viscoelasticity. Mech. Compos. Mater. 7, 646–648 (1971)

Welch, S.W.J., Rorrer, R.A.L., Duren, R.G. Jr.: Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech. Time-Depend. Mater. 3, 279–303 (1999)