Fractional-order models of supercapacitors, batteries and fuel cells: a survey

Todd J. Freeborn1, Brent Maundy2, Ahmed S. Elwakil3
1Department of Electrical and Computer Engineering, University of Alabama, Box 870286, Tuscaloosa, USA
2Department of Electrical and Computer Engineering, University of Calgary, 2500 University Dr. N.W, Calgary, Canada
3Department of Electrical and Computer Engineering, University of Sharjah, P.O. Box 27272, Sharjah, UAE

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bauman, J., Kazerani, M.: A Comparative Study of Fuel-Cell–Battery, Fuel-Cell–Ultracapacitor, and Fuel-Cell–Battery–Ultracapacitor Vehicles. IEEE Trans. Vehicular Tech. 57(2), 760–769 (2008)

Khaligh, A., Li, Z.: Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art. IEEE Trans. Vehicular Tech. 59(6), 2806–2814 (2010)

Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, Heidelberg (2011)

Elwakil, A.S.: Fractional-Order Circuits and Systems: An Emerging Interdisciplinary Research Area. IEEE Circuits Syst. Mag. 10(4), 40–50 (2010)

Nakagawa, M., Sorimachi, K.: Basic characteristics of a fractance device, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E 75, pp. 1814–1819 (1992)

Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)

Elwakil, A.S., Maundy, B.J., Fortuna, L., Chen, G.: Guest Editorial: Fractional-order circuits and systems, IEEE. J. Emerging Sel. Top. Circuits Syst. 3(3), 297–300 (2013)

Efe, M.O.: Fractional order systems in industrial automation—a survey. IEEE Trans. Ind. Inf. 7(4), 582–591 (2011)

Martin, R., Quintana, J.J., Ramos, A., Nuez, I.: “Modeling electrochemical double layer capacitor, from classical to fractional impedance. In: IEEE Mediterr. Electrotechnical Conf, pp. 61–66 (2008)

Rodrigues, S., Munichandraiah, N., Shukla, A.K.: “AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery. J. Solid State Electrochem. 3(7–8), 397–405 (1999)

Abbey, C., Joos, G.: “Super-capacitor energy storage for wind energy applications. IEEE Trans. Ind. Appl. 43(3), 769–776 (2007)

Jayasinghe, S.D., Vilathgamuwa, D.M.: Flying supercapacitors as power smoothing elements in wind generation. IEEE Trans. Ind. Electron. 60(7), 2909–2918 (2013)

Pegueroles-Queralt, J., Bianchi, F.D., Gomis-Bellmunt, O.:“A Power Smoothing System Based on Supercapacitors for Renewable Distributed Generation. IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2327554 (2014)

Cao, J., Emadi, A.: “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles. IEEE Trans. Power Electron. 27(1), 122–132 (2012)

Pandey, A., Allos, F., Hu, A., Budgett, D.: “Integration of super-capacitors into wirelessly charged biomedical sensors. In: IEEE Int. Symp. Ind. Electron., pp. 56–61 (2011)

Kim, S., No, K., Chou, P.: “Design and performance analysis of super-capacitor charging circuits for wireless sensor nodes, IEEE. J. Emerging Sel. Top. Circuits Syst. 1(3), 391–402 (2011)

Shi, L., Crow, M.: “Comparison of ultracapacitor electric circuit models. In: IEEE Power and Energy Society General Meeting, pp. 1–6 (2008)

Cahela, D.R., Tatarchuk, B.J.: “Impedance modeling of nickel fiber/carbon fiber composite electrodes for electrochemical capacitors”. In: Int. Conf. Ind. Electron. Control Instrum., pp. 1080–1085 (1997)

Mahon, P.J., Paul, G.L., Keshishian, S.M., Vassallo, A.M.: “Measurement and modeling of the higher-power performance of carbon-based super-capacitors. J. Power Sources 91(1), 68–76 (2000)

Quintana, J.J., Ramos, A., Nuez, I.: Identification of the fractional impedance of ultra-capacitors. In: Proc. 2nd AFAC Workshop Fractional Differ. Appl., pp. 289–293 (2006)

Dzieliński, A., Sarwas, G., Sierociuk, D.:“Comparison and validation of integer and fractional order ultracapacitor models. Adv. Diff. Equ. (2011). doi: 10.1186/1687-1847-2011-11

Martynyuk, V., Ortigueira, M.: Fractional model of an electrochemical capacitor. Signal Process. (2014). doi: 10.1016/j.sigpro.2014.02.021

Bertrand, N., Briat, B., Vinassa, J.M., ElBrouji, E.H.: “Influence of relaxation process on super-capacitor time response, Eur. Conf. Power Electron. Appl., pp. 1–8 (2009)

Wang, Y.: “Modeling Ultracapacitors as Fractional-Order Systems, in New Trends in Nanotechnology and Fractional Calculus Applications. In: Baleanu, D., et al. (eds.) pp. 257–262. Springer, Netherlands (2010)

Dzieliński, A., Sarwas, G., Sierociuk, D.: “Time domain validation of ultracapacitor fractional order model. In: IEEE Conf. Decis. Control, pp. 3730–3735 (2010)

Freeborn, T.J., Maundy, B., Elwakil, A.S.: “Measurement of super-capacitor fractional-order model parameters from voltage-excited step response, IEEE. J. Emerging Sel. Top. Circuits Syst 3(3), 367–376 (2013)

Dzieliński, A., Sierociuk, D.: “Ultracapacitor modeling and control using discrete fractional order state-space model. Acta Montanistica Slovaca 13(1), 136–145 (2008)

Bertrand, N., Sabatier, J., Briat, O., Vinassa, J.: “Fractional non-linear modeling of ultra-capacitors. Commun. Nonlinear Sci. Numer. Simulat., vol. 15, no. 5, pp. 1327–1337 (2010)

Bertrand, N., Sabatier, J., Briat, O., Vinassa, J.M.: Embedded fractional nonlinear super-capacitor model and its parametric estimation method. IEEE Trans. Ind. Electron. 57(12), 3991–4000 (2010)

Parreno, A., Roncero-Sanchez, P., del Toro Garcia, X., Feliu, V., Castillo, F.: Analysis of the Fractional Dynamics of an Ultracapacitor and Its Application to a Buck-Boost Converter. In: New Trends in Nanotechnology and Fractional Calculus Applications, pp. 97–105. Springer, Netherlands (2010)

Kotz, R., Carlen, M.: “Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15–16), 2483–2498 (2000)

Nelatury, S.R., Singh, P.: Extracting equivalent circuit parameters of lead-acid cells from sparse impedance measurements. J. Power Sources 112(2), 621–625 (2002)

Nelatury, S.R., Singh, P.: Equivalent circuit parameters of nickel/metal hydride batteries from sparse impedance measurements. J. Power Sources 132(1–2), 309–314 (2004)

Liao, X., Yu, J., Gao, L.: Electrochemical study on lithium iron phosphate/hard carbon lithium-ion batteries. J. Solid State Electrochem. 16(2), 423–428 (2012)

Waag, W., Sauer, D.U.: Application-specific parameterization of reduced order equivalent circuit battery models for improved accuracy at dynamic load, Meas., vol. 46, no. 10, pp. 4085–4093 (2013)

Viswanathan, V., Salkind, A.J., Kelley, J.J., Ockerman, J.B.: “Effect of state of charge on impedance spectrum of sealed cells part I: Ni-Cd cells. J. Appl. Electrochem. 25(8), 716–728 (1995)

Rodrigues, S., Munichandraiah, N., Shukla, A.K.: AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery. J. Solid State Electrochem. 3(7–8), 397–405 (1999)

Xu, J., Mi, C.C., Cao, B., Cao, J.: A new method to estimate state of charge of lithium-ion batteries based on the battery impedance model. J. Power Sources 233(1), 277–284 (2013)

Waag, W., Sauer, D.U.: Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination. Appl. Energy 111, 416–427 (2013)

Rodrigues, S., Munichandraiah, N., Shukla, A.K.: AC impedance and state-of-charge analysis of alkaline zinc/manganese dioxide primary cells. J. Appl. Electrochem. 30(3), 371–377 (2000)

Sabatier, J., Aoun, M., Oustaloup, A., Gregoire, G., Ragot, F., Roy, P.: Fractional system identification for lead acid battery state of charge estimation. Signal Process. 86(10), 2645–2657 (2006)

Kang, D.K., Shin, H.C.: “Investigation on cell impedance for high-power lithium-ion batteries. J. Solid State Electrochem. 11(10), 1405–1410 (2007)

Sabatier, J., Cugnet, M., Laruelle, S., Grugeon, S., Sahut, B., Oustaloup, A., Tarascon, J.M.: “A fractional order model for lead-acid battery crankability estimation, Commun. Nonlinear Sci. Numer. Simulat., vol. 15, no. 5, pp. 1308–1317 (2010)

Cugnet Sabatier, M., Laruelle, S., Grugeon, S., Sahut, B., Oustaloup, A., Tarascon J.: On lead-acid battery resistance and cranking-capability estimation. In: IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 909–917 (2010)

Jiang, W., Fahimi, B.: Active current sharing and source management in Fuel Cell-Battery hybrid power system. IEEE Trans. Ind. Electron. 57(2), 752–761 (2010)

Fouquet, N., Doulet, C., Nouillant, C., Dauphin-Tanguy, G., Ould-Bouamama, B.: Model based PEM fuel cell state-of-health monitoring via ac impedance measurements. J. Power Sources 159(2), 905–913 (2006)

Gebregergis, A., Pillay, P., Rengaswamy, R.: PEMFC fault diagnosis, modeling, and mitigation. IEEE Trans. Ind. Appl. 46(1), 295–303 (2010)

Hsu, N.Y., Yen, S.C., Jeng, K.T., Chien, C.C.: Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives. J. Power Sources 161(1), 232–239 (2006)

Deng, Z., Cao, H., Li, X., Jiang, J., Yang, J., Qin, Y.: Generalized predictive control for fractional order dynamic model of solid oxide fuel cell output power. J. Power Sources 195(24), 8103–8907 (2010)

Martin, E., Savadogo, O., Guiot, S.R., Tartakovsky, B.: “Electrochemical characterization of anodic biofilm development in a microbial fuel cell. J. Appl. Electrochem 43(5), 533–540 (2013)