Fractional-order Hammerstein state-space modeling of nonlinear dynamic systems from input–output measurements
Tài liệu tham khảo
Giri, 2010
Tang, 2014, Identification of nonlinear system using extreme learning machine based Hammerstein model, Commun Nonlinear Sci Numer Simul, 19, 3171, 10.1016/j.cnsns.2013.12.006
Gotmare, 2014, Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model, Expert Syst Appl, 42, 2538, 10.1016/j.eswa.2014.10.040
Liu, 2014, Modeling of a class of nonlinear dynamic system, Sens Transducers, 169, 153
Hu, 2014, Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model, Nonlinear Dynam, 76, 777, 10.1007/s11071-013-1168-1
Hong, 2014, Single-carrier frequency domain equalisation for hammerstein communication systems using complex-valued neural networks, IEEE Trans Signal Process, 62, 4467, 10.1109/TSP.2014.2333555
Zhao, 2014, Hammerstein identification of supercharged boiler superheated steam pressure using Laguerre-Fuzzy model, Int J Heat Mass Transfer, 70, 33, 10.1016/j.ijheatmasstransfer.2013.10.056
Sun, 2013, A novel APSO-aided maximum likelihood identification method for Hammerstein systems, Nonlinear Dynam, 73, 449, 10.1007/s11071-013-0800-4
Deng, 2014, Newton Iterative identification method for an input nonlinear finite impulse response system with moving average noise using the key variables separation technique, Nonlinear Dynam, 76, 1195, 10.1007/s11071-013-1202-3
Zhai, 2006, Continuous-time hammerstein and wiener modeling under second-order static nonlinearity for periodic process signals, Comput Chem Eng, 31, 1, 10.1016/j.compchemeng.2006.04.003
Garnier, 2014, The advantages of directly identifying continuous-time transfer function models in practical applications, Internat J Control, 87, 1319, 10.1080/00207179.2013.840053
Zhou, 2017, Hierarchical recursive least squares parameter estimation of non-uniformly sampled hammerstein nonlinear systems based on Kalman filter, J Franklin Inst B, 354, 4231, 10.1016/j.jfranklin.2017.02.010
Wang, 2015, Joint estimation of states and parameters for an input nonlinear state-space system with colored noise using the filtering technique, Circuits Systems Signal Process
Ding, 2016, Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition, J Comput Appl Math, 301, 135, 10.1016/j.cam.2016.01.042
Fu, 2013, Robust on-line nonlinear systems identification using multilayer dynamic neural networks with two-time scales, Neurocomputing, 113, 16, 10.1016/j.neucom.2012.11.041
Janakiraman, 2013, A lyapunov based stable online learning algorithm for nonlinear dynamical systems using extreme learning machines, 1
Wu, 2015, Identification and control of a fuel cell system in the presence of time-varying disturbances, Ind Eng Chem Res, 54, 7141, 10.1021/acs.iecr.5b01783
Wang, 2015, Identification of chaotic system using Hammerstein-ELM model, Nonlinear Dynam, 81, 1081, 10.1007/s11071-015-2050-0
Salhi, 2015, A recursive parametric estimation algorithm of multivariable nonlinear systems described by Hammerstein mathematical models, Appl Math Model, 39, 4951, 10.1016/j.apm.2015.03.050
Rahmani, 2017, Robust identification of neuro-fractional-order hammerstein systems, 27
Wang, 2015, Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle, Signal Process, 117, 208, 10.1016/j.sigpro.2015.05.010
Rahmani, 2017, Rahmani m-r farrokhi m nonlinear dynamic system identification using neuro-fractional-order Hammerstein model, Trans Inst Meas Control
Rahmani, 2017, Identification of neuro-fractional hammerstein systems: a hybrid frequency-/time-domain approach, Soft Comput, 1
Oldham, 1974
Narang, 2011, Continuous-time model identification of fractional-order models with time delays, IET Control Theory Appl, 5, 900, 10.1049/iet-cta.2010.0718
Aoun, 2002, System identification using fractional Hammerstein models
Zhao, 2014, Complete parametric identification of fractional order hammerstein systems, 1
Liao, 2012, Subspace identification for fractional order hammerstein systems based on instrumental variables, Int J Control Autom Syst, 10, 947, 10.1007/s12555-012-0511-5
Hammar, 2015, Fractional hammerstein system identification using particle swarm optimization, 1
Ivanov, 2015, Identification discrete fractional order hammerstein systems, 1
Pintelon, 2012
Podlubny, 1999
Li, 2009, Mittag–Leffler Stability of fractional order nonlinear dynamic systems, Automatica, 45, 1965, 10.1016/j.automatica.2009.04.003
Djamah, 2009, State space realization of fractional order systems, 37
Pintelon, 2008, Frequency-domain approach to continuous-time system identification: Some practical aspects, 215
Aguila-Camacho, 2014, Lyapunov functions for fractional order systems, Commun Nonlinear Sci Numer Simul, 19, 2951, 10.1016/j.cnsns.2014.01.022
Kudva, 1973, Synthesis of an adaptive observer using Lyapunov’s direct method, Internat J Control, 18, 1201, 10.1080/00207177308932593
Delavari, 2011, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dynam, 67, 2433, 10.1007/s11071-011-0157-5
Duarte-Mermoud, 2015, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun Nonlinear Sci Numer Simul, 22, 650, 10.1016/j.cnsns.2014.10.008
Wang, 2017, Fractional order Barbalat’s lemma and its applications in the stability of fractional order nonlinear systems, Math Model Anal, 22, 503, 10.3846/13926292.2017.1329755
Er-Wei, 2003, Frequency domain identification of Hammerstein models, IEEE Trans Automat Control, 48, 530, 10.1109/TAC.2003.809803
Poinot, 2004, Identification of fractional systems using an output-error technique, Nonlinear Dynam, 38, 133, 10.1007/s11071-004-3751-y
Tang, 2016, A changing forgetting factor RLS for online identification of nonlinear systems based on ELM–Hammerstein model, Neural Comput Appl, 1
Yan, 2011, Robust model predictive control of nonlinear affine systems based on a two-layer recurrent neural network, 24
Juang, 2007, Recurrent fuzzy network design using hybrid evolutionary learning algorithms, Neurocomputing, 70, 3001, 10.1016/j.neucom.2006.08.010
De Moor, 1997, DAISY: A database for identification of systems, J A, 4