Fractional-order Differentiation of the Gaussian Function for Processing Overlapped Peaks

Analytical Sciences - Tập 25 - Trang 1339-1344 - 2009
Yuanlu Li1
1College of Information and Control, Nanjing University of Information Science & Technology, Nanjing, P. R. China

Tóm tắt

The resolution method for overlapped peaks based on fractional-order differentiation (FOD) of the Gaussian function is described. Its main idea stems from a variation of the maximum and the zero-crossing of the Gaussian peaks signal at different differential orders. I obtained two kinds of estimators for estimating the characteristic parameters of the Gaussian peak based on the above relationship. The resolution of several kinds of overlapped peaks simulated by computer has been performed and discussed in detail. The proposed method has been used to resolve overlapped voltammetric peaks obtained in the analysis of binary mixtures of Cd(II) and In(III) metal ions. The results indicate that the proposed method can be used to resolve overlapped peaks which can be modeled by the Gaussian peaks both effectively and satisfactorily.

Tài liệu tham khảo

X. Q. Lu, H. D. Liu, M. Zhang, X. Q. Wang, Z. H. Xue, and J. W. Kang, Fenxi Huaxue, 2003, 33, 143. O. E. Sten, J. Electroanal. Chem., 1990, 296, 371. R. Biserka, P. Ivanka, and R. Marko, Anal. Chim. Acta, 1994, 285, 103. J. X. Fang, M. C. Wu, and D. X. Wang, Guangpuxue Yu Guangpu Fenxi, 1998, 18, 666. Y. Wang, J. Y. Mo, and X. Y. Chen, Sci. China, Ser. B: Chem., 2003, 33, 296. J. D. Qiu, R. P. Liang, X. Y. Zou, and J. Y. Mo, Fenxi Ceshi Xuebao, 2003, 22, 1. X. P. Zheng, J. Y. Mo, and P. X. Cai, Sci. China, Ser. B: Chem., 1999, 29, 141. J. B. Zheng, R. Zhao, H. Q. Zhang, X. Q. Zhang, and X. Z. Zhao, Fenxi Huaxue, 1999, 27, 855. X. Y. Zou and J. Y. Mo, Chin. Sci. B, 1999, 44, 901. X. G. Shao, C. Y. Pang, and L. Sun, Prog. Chem., 2000, 12, 233. Y. B. Li and X. Y. Huang, Yingyong Kexue, 2002, 20, 99. W. Huag, T. L. E. Henderson, and A. M. Bond, Anal. Chim. Acta, 1995, 304, 1. J. Mocak, I. Janiga, M. Rievaj, and D. Bustin, Meas. Sci. Rev., 2007, 7, 39 K. B. Oldham and J. Spanier, “The Fractional Calculus”, 1974, Academic Press, New York. J. Dzurov, D. Bustin, J. Mocák, and M. Rievaj, Chem. Listy, 1987, 81, 1001. D. Bustin, J. Mocák, and J. Garaj, Chem. Listy, 1987, 81, 1009. J. S. Yu. and Z. X. Zhang, J. Electroanal. Chem., 1996, 403, 1. A. Bobrowski, G. Kasprzyk, and J. Mocak, Collect. Czech. Chem. Commun., 2000, 65, 979. J. J. Toman and S. D. Brown, Anal. Chem., 1981, 53, 1497. Y. L. Li, S. L. Yu, and G. Zheng, Sci. China, Ser. B: Chem., 2007, 50, 797.