Fractional heat equation and the second law of thermodynamics
Tóm tắt
Từ khóa
Tài liệu tham khảo
A.A. Kilbas, T. Pierantozzi, J.J. Trujillo, L. Vázquez, On the solution of fractional evolution equations. J. Phys. A: Math. Gen. 37 (2004), 3271–3283.
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, Elsevier (2006).
Y. Luchko, M. Rivero, J.J. Trujillo, M.P. Velasco, Fractional models, non-locality and complex systems. Computers and Mathematics with Applications 59, No 3 (2010), 1048–1056.
F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192; http://www.math.bas.bg/~fcaa/volume4/jlumapa-1.gif
R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.
R. Metzler, T.F. Nonnemacher, Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem. Phys. 284 (2002), 67–90.
J.W. Nunziato, On heat conduction in materials with memory. Quart. Applied Mathematics 29 (1971), 187–204.
P. Paradisi, R. Cesari, F. Mainardi, F. Tampieri, A generalized Fick’s law to describe non-local transport processes. Physica A 293 (2001), 130–142.
T. Pierantozzi, L. Vázquez, An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like. J. Math. Phys. 46 (2005), 113512.
I. Podlubny, Fractional Differential Equations. Academic Press, San Diego et al. (1999).
M.B. Rubin, Hyperbolic heat conduction and the second law. Int. J. Engng. Sci. 30, No 11 (1992), 1665–1676.
S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993).