Fractional heat equation and the second law of thermodynamics

Fractional Calculus and Applied Analysis - Tập 14 Số 3 - Trang 334-342 - 2011
Luis Vázquez1, Juan J. Trujillo2, M. Pilar Velasco1
1Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid, Spain
2Departamento de Análisis Matemático, Universidad de La Laguna, La Laguna, Tenerife, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

A.A. Kilbas, T. Pierantozzi, J.J. Trujillo, L. Vázquez, On the solution of fractional evolution equations. J. Phys. A: Math. Gen. 37 (2004), 3271–3283.

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, Elsevier (2006).

Y. Luchko, M. Rivero, J.J. Trujillo, M.P. Velasco, Fractional models, non-locality and complex systems. Computers and Mathematics with Applications 59, No 3 (2010), 1048–1056.

F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192; http://www.math.bas.bg/~fcaa/volume4/jlumapa-1.gif

R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.

R. Metzler, T.F. Nonnemacher, Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem. Phys. 284 (2002), 67–90.

J.W. Nunziato, On heat conduction in materials with memory. Quart. Applied Mathematics 29 (1971), 187–204.

P. Paradisi, R. Cesari, F. Mainardi, F. Tampieri, A generalized Fick’s law to describe non-local transport processes. Physica A 293 (2001), 130–142.

T. Pierantozzi, L. Vázquez, An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like. J. Math. Phys. 46 (2005), 113512.

I. Podlubny, Fractional Differential Equations. Academic Press, San Diego et al. (1999).

M.B. Rubin, Hyperbolic heat conduction and the second law. Int. J. Engng. Sci. 30, No 11 (1992), 1665–1676.

S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993).

J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 1140–1153; doi:10.1016/j.cnsns.2010.05.027