Fractional Romanovski–Jacobi tau method for time-fractional partial differential equations with nonsmooth solutions

Applied Numerical Mathematics - Tập 182 - Trang 214-234 - 2022
Howayda Abo-Gabal1, Mahmoud A. Zaky2, Eid H. Doha1
1Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
2Department of Applied Mathematics, National Research Centre, Dokki, Cairo 12622, Egypt

Tài liệu tham khảo

Abbaszadeh, 2020, Second-order finite difference/spectral element formulation for solving the fractional advection-diffusion equation, Commun. Appl. Math. Comput. Sci., 1 Abbaszadeh, 2020, A POD-based reduced-order Crank-Nicolson/fourth-order alternating direction implicit (ADI) finite difference scheme for solving the two-dimensional distributed-order Riesz space-fractional diffusion equation, Appl. Numer. Math., 158, 271, 10.1016/j.apnum.2020.07.020 Abbaszadeh, 2021, Numerical investigation of reproducing kernel particle Galerkin method for solving fractional modified distributed-order anomalous sub-diffusion equation with error estimation, Appl. Math. Comput., 392, 125 Abo-Gabal, 2020, On Romanovski–Jacobi polynomials and their related approximation results, Numer. Methods Partial Differ. Equ., 36, 1982, 10.1002/num.22513 Alikhanov, 2015, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424, 10.1016/j.jcp.2014.09.031 Benson, 2000, The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413, 10.1029/2000WR900032 Bhrawy, 2016, Shifted fractional-order jacobi orthogonal functions: application to a system of fractional differential equations, Appl. Math. Model., 40, 832, 10.1016/j.apm.2015.06.012 Bhrawy, 2017, An improved collocation method for multi-dimensional space–time variable-order fractional schrödinger equations, Appl. Numer. Math., 111, 197, 10.1016/j.apnum.2016.09.009 Canuto, 2007 Chen, 2016, Generalized jacobi functions and their applications to fractional differential equations, Math. Comput., 85, 1603, 10.1090/mcom3035 Dehghan, 2016, Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation, Appl. Math. Model., 40, 3635, 10.1016/j.apm.2015.10.036 Deng, 2009, Finite element method for the space and time fractional Fokker–Planck equation, SIAM J. Numer. Anal., 47, 204, 10.1137/080714130 Doha, 2004, On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials, J. Phys. A, Math. Gen., 37, 657, 10.1088/0305-4470/37/3/010 Hendy, 2020, Global consistency analysis of L1-Galerkin spectral schemes for coupled nonlinear space-time fractional Schrödinger equations, Appl. Numer. Math., 156, 276, 10.1016/j.apnum.2020.05.002 Hesthaven, 2007 Heydari, 2020, Orthonormal shifted discrete Legendre polynomials for solving a coupled system of nonlinear variable-order time fractional reaction-advection-diffusion equations, Appl. Numer. Math. Hou, 2018, Müntz spectral methods for the time-fractional diffusion equation, Comput. Methods Appl. Math., 18, 43, 10.1515/cmam-2017-0027 Jin, 2013, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51, 445, 10.1137/120873984 Jin, 2016, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal., 36, 197 Jin, 2019, Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview, Comput. Methods Appl. Mech. Eng., 346, 332, 10.1016/j.cma.2018.12.011 Liu, 2019, A new spectral method using nonstandard singular basis functions for time-fractional differential equations, Commun. Appl. Math. Comput. Sci., 1, 207, 10.1007/s42967-019-00012-1 Lui, 2020, Spectral collocation in space and time for linear PDEs, J. Comput. Phys., 424 Lyu, 2020, A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions, Numer. Methods Partial Differ. Equ., 36, 579, 10.1002/num.22441 Masjedjamei, 2002, Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation, Integral Transforms Spec. Funct., 13, 169, 10.1080/10652460212898 Nikan, 2020, Numerical investigation of fractional nonlinear sine-Gordon and Klein-Gordon models arising in relativistic quantum mechanics, Eng. Anal. Bound. Elem., 120, 223, 10.1016/j.enganabound.2020.08.017 Podlubny, 1998 Sakamoto, 2011, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 426, 10.1016/j.jmaa.2011.04.058 Shen, 2011 Sheng, 2020, Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains, SIAM J. Numer. Anal., 58, 2435, 10.1137/19M128377X Stynes, 2016, Too much regularity may force too much uniqueness, Fract. Calc. Appl. Anal., 19, 1554, 10.1515/fca-2016-0080 Sun, 2006, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 193, 10.1016/j.apnum.2005.03.003 Sun, 2018, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64, 213, 10.1016/j.cnsns.2018.04.019 Tarasov, 2020 Tian, 2014, Polynomial spectral collocation method for space fractional advection–diffusion equation, Numer. Methods Partial Differ. Equ., 30, 514, 10.1002/num.21822 Yang, 2020, An unstructured mesh finite difference/finite element method for the three-dimensional time-space fractional Bloch-Torrey equations on irregular domains, J. Comput. Phys., 408, 10.1016/j.jcp.2020.109284 Zaky, 2019, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J. Comput. Appl. Math., 357, 103, 10.1016/j.cam.2019.01.046 Zaky, 2019, Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems, Appl. Numer. Math., 145, 429, 10.1016/j.apnum.2019.05.008 Zaky, 2020, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math., 154, 205, 10.1016/j.apnum.2020.04.002 Zaky, 2020, A priori error estimates of a jacobi spectral method for nonlinear systems of fractional boundary value problems and related volterra-fredholm integral equations with smooth solutions, Numer. Algorithms, 84, 63, 10.1007/s11075-019-00743-5 Zaky, 2020, Convergence analysis of an L 1-continuous Galerkin method for nonlinear time-space fractional Schrödinger equations, Int. J. Comput. Math., 1 Zaky, 2021, An efficient dissipation–preserving legendre–galerkin spectral method for the higgs boson equation in the de sitter spacetime universe, Appl. Numer. Math., 160, 281, 10.1016/j.apnum.2020.10.013 Zaky, 2020, Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations, Comput. Math. Appl., 79, 476, 10.1016/j.camwa.2019.07.008 Zaky, 2020, Semi-implicit Galerkin–Legendre spectral schemes for nonlinear time-space fractional diffusion–reaction equations with smooth and nonsmooth solutions, J. Sci. Comput., 82, 1, 10.1007/s10915-019-01117-8 Zaky, 2021, A unified spectral collocation method for nonlinear systems of multi-dimensional integral equations with convergence analysis, Appl. Numer. Math., 161, 27, 10.1016/j.apnum.2020.10.028 Zaslavsky, 2002, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371, 461, 10.1016/S0370-1573(02)00331-9 Zayernouri, 2013, Fractional Sturm–Liouville eigen-problems: theory and numerical approximation, J. Comput. Phys., 252, 495, 10.1016/j.jcp.2013.06.031 Zayernouri, 2015, A unified Petrov–Galerkin spectral method for fractional PDEs, Comput. Methods Appl. Mech. Eng., 283, 1545, 10.1016/j.cma.2014.10.051 Zheng, 2020, A Legendre spectral method on graded meshes for the two-dimensional multi-term time-fractional diffusion equation with non-smooth solutions, Appl. Math. Lett., 104, 10.1016/j.aml.2020.106247 Zhou, 2020, Nonuniform alikhanov linearized galerkin finite element methods for nonlinear time-fractional parabolic equations, J. Sci. Comput., 85, 1, 10.1007/s10915-020-01350-6