Fractional-Order RC and RL Circuits
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. Abbisso, R. Caponetto, L. Fortuna, D. Porto, Non-integer-order integration by using neural networks, in Proceedings of International Symposium on Circuits and Systems, vol. 38 (2001), pp. 688–691
K. Biswas, S. Sen, P. Dutta, Realization of a constant phase element and its performance study in a differentiator circuits. IEEE Trans. Circuits Syst. II 53, 802–806 (2006)
G.W. Bohannan, S.K. Hurst, L. Springler, Electrical component with fractional order impedance. Utility Patent Application, US2006/0267595, 11/372,232, 10 March 2006
G. Carlson, C. Halijak, Approximation of fractional capacitors (1/s)1/n by a regular Newton process. IEEE Trans. Circuits Syst. 11, 210–213 (1964)
T.C. Doehring, A.H. Freed, E.O. Carew, I. Vesely, Fractional order viscoelasticity of the aortic valve: an alternative to QLV. J. Biomech. Eng. 127(4), 700–708 (2005)
A. Dzielinski, Stability of discrete fractional order state-space systems. J. Vib. Control 14, 1543–1556 (2008)
T.C. Haba, G.L. Loum, G. Ablart, An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension. Chaos Solitons Fractals 33, 364–373 (2007)
S. Jesus, T.J.A. Machado, B.J. Cunha, Fractional electrical impedances in botanical elements. J. Vib. Control 14(9–10), 1389–1402 (2008)
B.T. Krishna, Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)
B.T. Krishna, K.V.V.S. Reddy, Active and passive realization of fractance device of order 1/2. J. Active Passive Electron. Compon. 1–5 (2008). doi: 10.1155/2008/369421
A. Lahiri, T.K. Rawat, Noise analysis of single stage fractional-order low-pass filter using stochastic and fractional calculus. ECTI Trans. Electr. Eng. Electron. Commun. 7(2), 136–143 (2009)
H. Li, Y. Luo, Y.Q. Chen, A fractional-order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. Control Syst. Technol. 18(2), 516–520 (2010)
R.L. Magin, Fractional Calculus in Bioengineering (Begell House, New York, 2006)
R. Martin, J.J. Quintara, A. Ramos, L. De La Nuez, Modeling electrochemical double layer capacitor, from classical to fractional impedance. Journal of Computational and Nonlinear Dynamics 3(2), 6 (2008)
P. Melchior, B. Orsoni, O. Lavialle, A. Oustaloup, The CRONE toolbox for Matlab: fractional path planning design in robotics. Int. J. Circuit Theory Appl. 36, 473–492 (2008). doi: 10.1002/cta . Laboratoire d’Automatique et de Productique (LAP) 2001. Copyright 2007 Wiley, New York
K. Moaddy, A.G. Radwan, K.N. Salama, S. Momani, I. Hashim, The fractional-order modeling and synchronization of electrically coupled neurons system. J. Comput. Math. Appl. (2012). doi: 10.1016/j.camwa.2012.01.005
S. Mukhopadhyay, C. Coopmans, Y.Q. Chen, Purely analog fractional-order PI control using discrete fractional capacitors (fractals): synthesis and experiments, in International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, USA (2009)
M. Nakagawa, K. Sorimachi, Basic characteristics of a fractance device. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E75(12), 1814–1819 (1992)
F.L. Oustaloup, B. Mathieu, Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47, 25–39 (2000)
A.G. Radwan, Stability analysis of the fractional-order RLC circuit. J. Fract. Calc. Appl. 3 (2012)
A.G. Radwan, K.N. Salama, Passive and active elements using fractional L β C α circuit. IEEE Trans. Circuits Syst. I, Regul. Pap. 58(10), 2388–2397 (2011)
A.G. Radwan, A.M. Soliman, A.S. Elwakil, Design equations for fractional-order sinusoidal oscillators: practical circuit examples, in International Conference on Microelectronics (ICM) (2007), pp. 91–94
A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits Syst. I, Regul. Pap. 55, 2051–2063 (2008)
A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to fractional-order domain. J. Circuits Syst. Comput. 18(2), 361–386 (2009)
A.G. Radwan, A.M. Soliman, A.S. Elwakil, A. Sedeek, On the stability of linear systems with fractional order elements. Chaos Solitons Fractals 40(5), 2317–2328 (2009)
A.G. Radwan, K. Moddy, S. Momani, Stability and nonstandard finite difference method of the generalized Chua’s circuit. Comput. Math. Appl. 62, 961–970 (2011)
A.G. Radwan, A. Shamim, K.N. Salama, Theory of fractional-order elements based impedance matching networks. IEEE Microw. Wirel. Compon. Lett. 21(3), 120–122 (2011)
S. Roy, On the realization of a constant-argument immittance or fractional operator. IEEE Trans. Circuits Syst. 14, 264–274 (1967)
J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus; Theoretical Developments and Applications in Physics and Engineering (Springer, Berlin, 2007)
K. Saito, M. Sugi, Simulation of power-law relaxations by analog circuits: fractal distribution of relaxation times and non-integer exponents. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E76(2), 205–209 (1993)
A. Shamim, A.G. Radwan, K.N. Salama, Fractional Smith chart theory and application. IEEE Microw. Wirel. Compon. Lett. 21(3), 117–119 (2011)
M. Sugi, Y. Hirano, Y.F. Miura, K. Saito, Simulation of fractal immittance by analog circuits: an approach to the optimized circuits. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82(8), 1627–1634 (1999)