Fractional Order Bilingualism Model Without Conversion from Dominant Unilingual Group to Bilingual Group
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baggs, I., Freedman, H.I.: Can the speakers of dominated language survive as unilinguals?: A mathematical model on bilingualism. J. Mat. Comput. Model. 18(6), 9–18 (1993)
Paul, M., Simons, G.F., Fennig, C.D. (eds.): Ethnologue: Languages of the world, 17th edn. SIL International, Dallas (2013)
Baggs, I., Freedman, H.I.: A mathematical model for the dynamical interactions between a unilingual and bilingual population: persistence versus extinction. J. Math. Sociol. 16, 51–75 (1990)
El-Owaidy, H.M., Ismail, M.: A mathematical model on bilingualism. Appl. Math. Comput. 131, 415–432 (2002)
Sree Hari Rao, V., Raja Sekhara Rao, P.: Dynamical models for the development of unilingual society into bilingual society. Differ. Equat. Dyn. Syst. 16, 29–45 (2008)
Wyburn, J., Hayward, J.: The future of bilingualism: an application of the Baggs and Freedman model. J. Math. Sociol. 32, 267–284 (2008)
Özalp, N., Demirci, E.: A fractional order SEIR model with vertical transmission. Math. Comput. Model. 54, 1–6 (2011)
Diethelm, K.: The Analysis of Fractional Dfferential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, In: Lecture Notes in Mathematics. Springer-Verlag, Berlin (2010)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Tenreiro Machado, J.: Numerical analysis of the initial conditions in fractional systems. Commun. Nonlinear Sci. Numer. Simulat. 19, 2935–2941 (2014)
Demirci, E., Özalp, N.: A method for solving differential equations of fractional order. J. Comput. Appl. Math. 236, 2754–2762 (2012)
Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)
Matignon, D.: Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 2, 963 (1996)