Fractional Hermite–Hadamard type integral inequalities for functions whose modulus of the mixed derivatives are co-ordinated $$(log,(\alpha ,m))$$ -preinvex

Afrika Matematika - Tập 32 - Trang 925-940 - 2021
S. Ghomrani1, B. Meftah2, W. Kaidouchi3, M. Benssaad3
1Département de science, Ecole Normale Supérieure Messaoud Zeggar Setif, Azzaba, Algeria
2Laboratoire des télécommunications, Faculté des Sciences et de la Technologie, University of 8 May 1945 Guelma, Guelma, Algeria
3Département mathématiques et informatique., Ecole normale supérieure d’enseignement technologique Skikda, Azzaba, Algeria

Tóm tắt

In this paper, the concept of co-ordinated (log, (s, m))-preinvex functions is introduced. Some new fractional Hermite–Hadamard type inequalities based on new integral identity are established.

Tài liệu tham khảo

Alomari, A., Darus, M.: The Hadamard’s inequality for \(s\)-convex function of \(2\)-variables on the co-ordinates. Int. J. Math. Anal. (Ruse) 2(13–16), 629–638 (2008) Bai, S.-P., Qi, F.: Some inequalities for \(\left( s_{1}, m_{1}\right) \)-\(\left( s_{2}, m_{2}\right) \)-convex functions on the co-ordinates. Global J. Math. Anal. 1(1), 22–28 (2013) Ben-Israel, A., Mond, B.: What is invexity? J. Aust. Math. Soc. Ser. B 28(1), 1–9 (1986) Dragomir, S.S.: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5(4), 775–788 (2001) Hanson, M.A.: On sufficiency of the Kuhn–Tucker conditions. J. Math. Anal. Appl. 80(2), 545–550 (1981) Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, (2006) Latif, M.A., Alomari, M.: Hadamard-type inequalities for product two convex functions on the co-ordinates. Int. Math. Forum 4(45–48), 2327–2338 (2009) Latif, M.A., Dragomir, S.S.: Some Hermite–Hadamard type inequalities for functions whose partial derivatives in absolute value are preinvex on the co-ordinates. Facta Univ. Ser. Math. Inform. 28(3), 257–270 (2013) Matloka, M.: On some Hadamard-type inequalities for \(\left( h_{1}, h_{2}\right) \)-preinvex functions on the co-ordinates. J. Inequal. Appl. 2013, 227 (2013). 12 pp Meftah, B., Boukerrioua, K., Chiheb, T.: New Hadamard’s inequality for \(\left( s_{1}, s_{2}\right) \)-preinvex functions on co-ordinates. Kragujevac J. Math. 39(2), 231–254 (2015) Noor, M.A.: Variational-like inequalities. Optimization 30(4), 323–330 (1994) Noor, M.A.: Invex equilibrium problems. J. Math. Anal. Appl. 302(2), 463–475 (2005) Pečarić, J., Proschan, F., Tong, Y.L.: Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, (1992) Pini, R.: Invexity and generalized convexity. Optimization 22(4), 513–525 (1991) Sarıkaya, M.Z.: On the Hermite–Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms Spec. Funct. 25(2), 134–147 (2014) Sarıkaya, M.Z., Set, E., Özdemir, M.E., Dragomir, S.S.: New some Hadamard’s type inequalities for co-ordinated convex functions. Tamsui Oxf. J. Inf. Math. Sci. 28(2), 137–152 (2012) Weir, T., Mond, B.: Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 136(1), 29–38 (1988) Xi, B.-Y., Qi, F.: Some new integral inequalities of Hermite-Hadamard type for \((log,(s, m))\)-convex functions on co-ordinates. Stud. Univ. Babeş-Bolyai Math. 60(4), 509–525 (2015) Yang, X.-M., Li, D.: On properties of preinvex functions. J. Math. Anal. Appl. 256(1), 229–241 (2001)