Fractal dynamics in physiology: Alterations with disease and aging

Ary L. Goldberger1, Luı́s A. Nunes Amaral1, Jeffrey M. Hausdorff1, Plamen Ch. Ivanov1, Chung‐Kang Peng1, H. Eugene Stanley1
1Cardiovascular Division and Margret and H. A. Rey Laboratory for Nonlinear Dynamics in Medicine, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215; and Center for Polymer Studies, Physics Department, Boston University, Boston, MA 02215

Tóm tắt

According to classical concepts of physiologic control, healthy systems are self-regulated to reduce variability and maintain physiologic constancy. Contrary to the predictions of homeostasis, however, the output of a wide variety of systems, such as the normal human heartbeat, fluctuates in a complex manner, even under resting conditions. Scaling techniques adapted from statistical physics reveal the presence of long-range, power-law correlations, as part of multifractal cascades operating over a wide range of time scales. These scaling properties suggest that the nonlinear regulatory systems are operating far from equilibrium, and that maintaining constancy is not the goal of physiologic control. In contrast, for subjects at high risk of sudden death (including those with heart failure), fractal organization, along with certain nonlinear interactions, breaks down. Application of fractal analysis may provide new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as to monitoring the aging process. Similar approaches show promise in assessing other regulatory systems, such as human gait control in health and disease. Elucidating the fractal and nonlinear mechanisms involved in physiologic control and complex signaling networks is emerging as a major challenge in the postgenomic era.

Từ khóa


Tài liệu tham khảo

Walleczek J. (1999) Nonlinear Dynamics Self-Organization and Biomedicine (Cambridge Univ. Press Cambridge U.K.).

10.1164/ajrccm.163.6.ed1801a

Bassingthwaighte J. B. Liebovitch L. S. & West B.J. (1994) Fractal Physiology (Oxford Univ. Press New York).

10.1038/371233a0

Glass L. & Mackey M. C. (1988) From Clocks to Chaos: the Rhythms of Life (Princeton Univ. Press Princeton).

Goldbeter A. (1996) Biomedical Oscillations and Cellular Rhythms: The Molecular Basis of Periodic and Chaotic Behavior (Cambridge Univ. Press Cambridge U.K.).

10.1126/science.284.5420.1677

10.1038/35065745

10.1038/35065725

Belair J. Glass L. an der Heiden U. & Milton J. (1995) Dynamical Disease: Mathematical Analysis of Human Illness (Am. Inst. Phys. Press New York).

10.1001/jama.1992.03480130122036

10.1353/pbm.1997.0063

10.1016/S0140-6736(96)90948-4

10.1038/20924

10.1152/jappl.1997.82.1.262

Goldberger A. L. Peng C.-K. & Lipsitz L. A. (2002) Neurobiol. Aging in press.

Mandelbrot B. B. (1982) The Fractal Geometry of Nature. (Freeman New York).

10.1152/ajplung.1991.261.6.L361

Peng C.-K. Hausdorff J. M. & Goldberger A. L. (2000) in Nonlinear Dynamics Self-Organization and Biomedicine ed. Walleczek J. (Cambridge Univ. Press Cambridge U.K.) pp. 66–96.

10.1161/01.RES.68.6.1751

10.1152/ajpheart.1994.266.1.H319

10.1103/PhysRevLett.70.1343

Yamamoto Y. & Hughson, R. L. (1994) Am. J. Physiol. 266, R40-R49.7905719

10.1016/S0378-4371(97)00522-0

Ivanov P. Ch. Goldberger A. L. Havlin S. Peng C.-K. Rosenblum M. G. & Stanley H. E. (1999) in Wavelets in Physics ed. van den Berg J. C. (Cambridge Univ. Press Cambridge U.K.) pp. 391–419.

10.1103/PhysRevE.49.1685

10.1063/1.166141

10.1142/S0218348X95000692

10.1103/PhysRevE.64.011114

10.1209/epl/i1998-00366-3

10.1161/01.CIR.96.3.842

10.1161/01.CIR.101.1.47

10.1016/S0002-9149(98)01068-6

10.1016/S0002-9149(98)01076-5

10.1209/epl/i1999-00525-0

10.1103/PhysRevLett.85.3736

Iyengar N., Peng, C.-K., Morin, R., Goldberger, A. L. & Lipsitz, L. A. (1996) Am. J. Physiol. 271, R1078-R1084.8898003

10.1016/S0378-4371(99)00230-7

10.1063/1.1395631

10.1016/0378-4371(91)90072-K

10.1038/383323a0

10.1073/pnas.93.6.2608

10.1038/381215a0

10.1103/PhysRevLett.86.1900

10.1103/PhysRevLett.86.6026

Marsh D. J., Osborn, J. L. & Cowley, A. W. (1990) Am. J. Physiol. 258, F1394-F1400.2337155

10.1109/TBME.1982.324972

10.1103/PhysRevLett.86.1650

10.1103/PhysRevLett.67.3515

10.1103/PhysRevLett.59.1424

10.1152/jappl.1995.78.1.349

10.1152/jappl.1999.86.3.1040

10.1152/jappl.2000.88.6.2045

10.1142/S0218348X98000122

10.1152/jappl.1996.80.5.1448

10.1016/S0966-6362(00)00094-1

10.1063/1.166103

10.1161/01.CIR.101.23.e215

10.1109/51.932728