Fractal dimension and the persistent homology of random geometric complexes

Advances in Mathematics - Tập 372 - Trang 107291 - 2020
Benjamin Schweinhart1
1231 W 18th Ave, Columbus, OH, 43210, USA

Tài liệu tham khảo

Farkas, 2015 Adams, 2019, A fractal dimension for measures via persistent homology Aldous, 1992, Asymptotics for Euclidean minimal spanning trees on random points Baish, 2000, Fractals and cancer Barbará, 2000, Using the fractal dimension to cluster datasets Bauer Beffara, 2008, The dimension of the SLE curves, Ann. Probab., 10.1214/07-AOP364 Beurling, 1956, The boundary correspondence under quasiconformal mappings, Acta Math., 10.1007/BF02392360 Bobrowski, 2018, Topology of random geometric complexes: a survey, J. Appl. Comput. Topol., 10.1007/s41468-017-0010-0 Bobrowski, 2017, Maximally persistent cycles in random geometric complexes, Ann. Appl. Probab., 10.1214/16-AAP1232 Bobrowski, 2015, The topology of probability distributions on manifolds, Probab. Theory Relat. Fields, 10.1007/s00440-014-0556-x Bobrowski, 2017, Random Čech complexes on Riemannian manifolds, Random Struct. Algorithms, 10.1002/rsa.20697 Bouligand, 1928, Ensembles impropres et nombre dimensionnel, Bull. Sci. Math. Carlsson, 2009, Topology and data, Bull. Am. Math. Soc., 10.1090/S0273-0979-09-01249-X Chazal, 2016 Chazal, 2009, Proximity of persistence modules and their diagrams Chazal, 2014, Persistence stability for geometric complexes, Geom. Dedic., 10.1007/s10711-013-9937-z Cohen-Steiner, 2007, Stability of persistence diagrams, Discrete Comput. Geom., 37, 10.1007/s00454-006-1276-5 Cohen-Steiner, 2010, Lipschitz functions have lp-stable persistence, Found. Comput. Math., 10.1007/s10208-010-9060-6 Coornaert, 1993, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pac. J. Math., 10.2140/pjm.1993.159.241 Costa, 2004, Geodesic entropic graphs for dimension and entropy estimation in manifold learning, IEEE Trans. Signal Process., 10.1109/TSP.2004.831130 David, 1993 David, 1997 Davies, 1999, Fractal analysis of surface roughness by using spatial data, J. R. Stat. Soc. B, 10.1111/1467-9868.00160 de Kergorlay Diaconis, 2013, Sampling from a manifold, Inst. Math. Stat. Collect., 10.1214/12-IMSCOLL1006 Divol Duy Edelsbrunner, 2002, Topological persistence and simplification, Discrete Comput. Geom., 10.1007/s00454-002-2885-2 Edelsbrunner, 2008, Persistent homology — a survey, Contemp. Math., 10.1090/conm/453/08802 Edeslbrunner, 2013 Edgar, 2003, Classics on Fractals Ghrist, 2008, Barcodes: the persistent homology of data, Bull. Am. Math. Soc. Goff, 2011, Extremal Betti numbers of Vietoris-Rips complexes, Discrete Comput. Geom., 10.1007/s00454-010-9274-z Grassberger, 1983, Measuring the strangeness of strange attractors, Phys. D, Nonlinear Phenom., 10.1016/0167-2789(83)90298-1 Halley, 2004, Uses and abuses of fractal methodology in ecology, Ecol. Lett., 10.1111/j.1461-0248.2004.00568.x Hauksson, 2012, Waveform relocated earthquake catalog for southern California (1981 to June 2011)r, Bull. Seismol. Soc. Am., 10.1785/0120120010 Hausdorff, 1918, Dimension und äußeres maß, Math. Ann., 10.1007/BF01457179 Hoorfar, 2008, Inequalities on the Lambert W function and hyperpower function, J. Inequal. Pure Appl. Math. S. Tringali (https://mathoverflow.net/users/16537/salvo tringali). A result of Sierpiński on non-atomic measures. MathOverflow. https://mathoverflow.net/q/223245 (version: 2017-04-13). Jaquette, 2020, Fractal dimension estimation with persistent homology: a comparative study, Commun. Nonlinear Sci. Numer. Simul., 84, 10.1016/j.cnsns.2019.105163 Kesten, 1996, The central limit theorem for weighted minimal spanning trees on random points, Ann. Appl. Probab., 10.1214/aoap/1034968141 Kozma, 2010, On the connectivity threshold for general uniform metric spaces, Inf. Process. Lett., 10.1016/j.ipl.2010.02.015 Kozma, 2006, The minimal spanning tree and the upper box dimension, Proc. Am. Math. Soc. Lin, 2007, Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005, J. Geophys. Res., Solid Earth, 10.1029/2007JB004986 Lopes, 2009, Fractal and multifractal analysis: a review, Med. Image Anal., 10.1016/j.media.2009.05.003 Mackay, 2010 MacPherson, 2012, Measuring shape with topology, J. Math. Phys., 53, 10.1063/1.4737391 Mandelbrot, 1977 Mandelbrot, 1982 Maria, 2015, Persistent cohomology Máté, 2014, Persistence intervals of fractals, Physica A, 10.1016/j.physa.2014.03.037 Niyogi, 2008, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 10.1007/s00454-008-9053-2 Orponen, 2017, On the distance sets of Ahlfors-David regular sets, Adv. Math., 10.1016/j.aim.2016.11.035 Robins, 2000 Rouvreau, 2015, Alpha complex SCEDC, 2013 Schweinhart Schweinhart, 2019, Persistent homology and the upper box dimension, Discrete Comput. Geom., 1 Sikorski, 1958 Stalney, 1975, The upper bound conjecture and Cohen-Macaulay rings, Stud. Appl. Math. Steele, 1988, Growth rates of Euclidean minimal spanning trees with power weighted edges, Ann. Probab., 10.1214/aop/1176991596 Stemeseder, 2014 Takens, 1980, 366 Traina, 2010, Fast feature selection using fractal dimension, J. Inf. Data Manag. van de Weygaert, 1992, The minimal spanning tree as an estimator for generalized dimensions, Phys. Lett. A, 10.1016/0375-9601(92)90584-9 Yogeshwaran, 2017, Random geometric complexes in the thermodynamic regime, Probab. Theory Relat. Fields, 10.1007/s00440-015-0678-9 Yu, 2008, Analysis of flow in fractal porous media, Appl. Mech. Rev., 10.1115/1.2955849 Yukich, 2000, Asymptotics for weighted minimal spanning trees on random points Zomorodian, 2005, Computing persistent homology, Discrete Comput. Geom., 33, 249, 10.1007/s00454-004-1146-y