Fractal dimension and the persistent homology of random geometric complexes
Tài liệu tham khảo
Farkas, 2015
Adams, 2019, A fractal dimension for measures via persistent homology
Aldous, 1992, Asymptotics for Euclidean minimal spanning trees on random points
Baish, 2000, Fractals and cancer
Barbará, 2000, Using the fractal dimension to cluster datasets
Bauer
Beffara, 2008, The dimension of the SLE curves, Ann. Probab., 10.1214/07-AOP364
Beurling, 1956, The boundary correspondence under quasiconformal mappings, Acta Math., 10.1007/BF02392360
Bobrowski, 2018, Topology of random geometric complexes: a survey, J. Appl. Comput. Topol., 10.1007/s41468-017-0010-0
Bobrowski, 2017, Maximally persistent cycles in random geometric complexes, Ann. Appl. Probab., 10.1214/16-AAP1232
Bobrowski, 2015, The topology of probability distributions on manifolds, Probab. Theory Relat. Fields, 10.1007/s00440-014-0556-x
Bobrowski, 2017, Random Čech complexes on Riemannian manifolds, Random Struct. Algorithms, 10.1002/rsa.20697
Bouligand, 1928, Ensembles impropres et nombre dimensionnel, Bull. Sci. Math.
Carlsson, 2009, Topology and data, Bull. Am. Math. Soc., 10.1090/S0273-0979-09-01249-X
Chazal, 2016
Chazal, 2009, Proximity of persistence modules and their diagrams
Chazal, 2014, Persistence stability for geometric complexes, Geom. Dedic., 10.1007/s10711-013-9937-z
Cohen-Steiner, 2007, Stability of persistence diagrams, Discrete Comput. Geom., 37, 10.1007/s00454-006-1276-5
Cohen-Steiner, 2010, Lipschitz functions have lp-stable persistence, Found. Comput. Math., 10.1007/s10208-010-9060-6
Coornaert, 1993, Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pac. J. Math., 10.2140/pjm.1993.159.241
Costa, 2004, Geodesic entropic graphs for dimension and entropy estimation in manifold learning, IEEE Trans. Signal Process., 10.1109/TSP.2004.831130
David, 1993
David, 1997
Davies, 1999, Fractal analysis of surface roughness by using spatial data, J. R. Stat. Soc. B, 10.1111/1467-9868.00160
de Kergorlay
Diaconis, 2013, Sampling from a manifold, Inst. Math. Stat. Collect., 10.1214/12-IMSCOLL1006
Divol
Duy
Edelsbrunner, 2002, Topological persistence and simplification, Discrete Comput. Geom., 10.1007/s00454-002-2885-2
Edelsbrunner, 2008, Persistent homology — a survey, Contemp. Math., 10.1090/conm/453/08802
Edeslbrunner, 2013
Edgar, 2003, Classics on Fractals
Ghrist, 2008, Barcodes: the persistent homology of data, Bull. Am. Math. Soc.
Goff, 2011, Extremal Betti numbers of Vietoris-Rips complexes, Discrete Comput. Geom., 10.1007/s00454-010-9274-z
Grassberger, 1983, Measuring the strangeness of strange attractors, Phys. D, Nonlinear Phenom., 10.1016/0167-2789(83)90298-1
Halley, 2004, Uses and abuses of fractal methodology in ecology, Ecol. Lett., 10.1111/j.1461-0248.2004.00568.x
Hauksson, 2012, Waveform relocated earthquake catalog for southern California (1981 to June 2011)r, Bull. Seismol. Soc. Am., 10.1785/0120120010
Hausdorff, 1918, Dimension und äußeres maß, Math. Ann., 10.1007/BF01457179
Hoorfar, 2008, Inequalities on the Lambert W function and hyperpower function, J. Inequal. Pure Appl. Math.
S. Tringali (https://mathoverflow.net/users/16537/salvo tringali). A result of Sierpiński on non-atomic measures. MathOverflow. https://mathoverflow.net/q/223245 (version: 2017-04-13).
Jaquette, 2020, Fractal dimension estimation with persistent homology: a comparative study, Commun. Nonlinear Sci. Numer. Simul., 84, 10.1016/j.cnsns.2019.105163
Kesten, 1996, The central limit theorem for weighted minimal spanning trees on random points, Ann. Appl. Probab., 10.1214/aoap/1034968141
Kozma, 2010, On the connectivity threshold for general uniform metric spaces, Inf. Process. Lett., 10.1016/j.ipl.2010.02.015
Kozma, 2006, The minimal spanning tree and the upper box dimension, Proc. Am. Math. Soc.
Lin, 2007, Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005, J. Geophys. Res., Solid Earth, 10.1029/2007JB004986
Lopes, 2009, Fractal and multifractal analysis: a review, Med. Image Anal., 10.1016/j.media.2009.05.003
Mackay, 2010
MacPherson, 2012, Measuring shape with topology, J. Math. Phys., 53, 10.1063/1.4737391
Mandelbrot, 1977
Mandelbrot, 1982
Maria, 2015, Persistent cohomology
Máté, 2014, Persistence intervals of fractals, Physica A, 10.1016/j.physa.2014.03.037
Niyogi, 2008, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 10.1007/s00454-008-9053-2
Orponen, 2017, On the distance sets of Ahlfors-David regular sets, Adv. Math., 10.1016/j.aim.2016.11.035
Robins, 2000
Rouvreau, 2015, Alpha complex
SCEDC, 2013
Schweinhart
Schweinhart, 2019, Persistent homology and the upper box dimension, Discrete Comput. Geom., 1
Sikorski, 1958
Stalney, 1975, The upper bound conjecture and Cohen-Macaulay rings, Stud. Appl. Math.
Steele, 1988, Growth rates of Euclidean minimal spanning trees with power weighted edges, Ann. Probab., 10.1214/aop/1176991596
Stemeseder, 2014
Takens, 1980, 366
Traina, 2010, Fast feature selection using fractal dimension, J. Inf. Data Manag.
van de Weygaert, 1992, The minimal spanning tree as an estimator for generalized dimensions, Phys. Lett. A, 10.1016/0375-9601(92)90584-9
Yogeshwaran, 2017, Random geometric complexes in the thermodynamic regime, Probab. Theory Relat. Fields, 10.1007/s00440-015-0678-9
Yu, 2008, Analysis of flow in fractal porous media, Appl. Mech. Rev., 10.1115/1.2955849
Yukich, 2000, Asymptotics for weighted minimal spanning trees on random points
Zomorodian, 2005, Computing persistent homology, Discrete Comput. Geom., 33, 249, 10.1007/s00454-004-1146-y