Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer

D. Cusumano1, N. Dinapoli2, Luca Boldrini3, G. Chiloiro3, Roberto Gatta2, C. Masciocchi3, Jacopo Lenkowicz3, Calogero Casà2, Andrea Damiani2, L. Azario4, Johan van Soest5, André Dekker5, Philippe Lambin5, Marco De Spirito4, Vincenzo Valentini3
1Polo scienze delle immagini, di laboratorio e infettivologiche, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1, 00168, Rome, Italy
2Polo Scienze Oncologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1, 00168, Rome, Italy
3Polo Scienze Oncologiche ed Ematologiche, Istituto di Radiologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1, 00168, Rome, Italy
4Polo scienze delle immagini, di laboratorio e infettivologiche, Istituto di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1, 00168, Rome, Italy
5Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gillies R, Kinahan P, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:2

Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30(9):1234–1248

Coroller TP, Grossmann P, Hou Y et al (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114(3):345–350

Chan A, Tuszynski JA (2016) Automatic prediction of tumour malignancy in breast cancer with fractal dimension. R Soc Opensci 3:160558

Waliszewski P (2016) The Quantitative criteria based on the fractal dimensions, entropy, and lacunarity for the spatial distribution of cancer cell nuclei enable identification of low or high aggressive prostate carcinomas. Front Physiol 7:34

McGarry S, Hurrell S, Kaczmarowski A et al (2016) Magnetic resonance imaging-based radiomic profiles predict patient prognosis in newly diagnosed glioblastoma before therapy. Tomography 2(3):223–228

Cook G, Siddique M, Taylor B et al (2014) Radiomics in PET: principles and applications. Clin Transl Imaging 2:269–276

Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:40

Sauer R, Liersch T, Merkel S et al (2012) Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 30:1926–1933

Valentini V, van Stiphout RG, Lammering G et al (2015) Selection of appropriate end-points (pCR vs 2yDFS) for tailoring treatments with prediction models in locally advanced rectal cancer. Radiother Oncol 114:302–309

Vecchio FM, Valentini V, Minsky BD et al (2005) The relationship of pathologic tumor regression grade (TRG) and outcomes after preoperative therapy in rectal cancer. Int J Radiat Oncol Biol Phys 62:752–760

Macchia G, Gambacorta MA, Masciocchi C et al (2017) Time to surgery and pathologic complete response after neoadjuvant chemoradiation in rectal cancer: a population study on 2094 patients. Clin Transl Radiat Oncol 4:8–14

O’Neill BD, Brown G, Heald RJ et al (2007) Non-operative treatment after neoadjuvant chemoradiotherapy for rectal cancer. Lancet Oncol 8:625–633

Maas M, Beets-Tan RG, Lambregts DM et al (2011) Wait-and see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 29:4633–4640

Barbaro B, Fiorucci C, Tebala C et al (2009) Locally advanced rectal cancer: MR imaging in prediction of response after preoperative chemotherapy and radiation therapy. Radiology 250:730–739

Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558

Alic L, Niessen WJ, Veenland JF (2014) Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLoS ONE 9:e110300

Mandelbrot B (1982) The fractal geometry of nature. Ed Brickmann, J Free Co, San Francisco

Szigeti K, Szabó T, Korom C et al (2016) Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data. BMC Med Imaging 16:14

Mandard AM, Dalibard F, Mandard JC et al (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Cancer 3(11):2680–2686

International Commissioning on Radiation Units and Measurements. (2010) prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT).ICRU Report 83

R Core Team (2014). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; https://www.r-project.org

Dinapoli N, Alitto AR, Vallati M et al (2015) Moddicom: a complete and easily accessible library for prognostic evaluations relying on image features. Conf Proc IEEE Eng Med Biol Soc. https://doi.org/10.1109/EMBC.2015.7318476

Smith TG, Lange GD, Marks WB (1996) Fractal methods and results in cellular morphology-dimensions, lacunarity and multifractals. J Neurosci Method 69(2):123–136

Rasband WS. ImageJ. Version 7.0. Bethesda (MD): U. S. National Institutes of Health USA; 1997–2016

Dinapoli N, Casà C, Barbaro B et al (2016) Radiomics for rectal cancer. Transl Cancer Res 5:1–8

Ng F, Ganeshan B, Kozarski R et al (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266:177–184

Karperien A, Ahammer H, Jelinek HF (2013) Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci 7:3

Captur G, Karperien A, Li C et al (2015) Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation. J Cardiovasc Magn Reson 17:80

Taylor JR (1997) An introduction to error analysis: the study of uncertainties in physical measurements. Cambridge University Press, Cambridge (UK)

Parmar C, Grossmann P, Bussink J et al (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

International Commissioning on Radiation Units and Measurements.(2008) Receiver Operating Characteristic (ROC) Analysis in Medical Imaging. ICRU Report 79

Gonzalez RC, Woods E (2002) Digital image processing. Prentice-Hall Inc, New Jersey

van Stiphout RG, Valentini V, Buijsen J et al (2014) Nomogram predicting response after chemoradiotherapy in rectal cancer using sequential PETCT imaging: a multicentric prospective study with external validation. Radiother Oncol 113(2):215–222

Intven M, Monninkhof EM, Reerink O et al (2015) Combined T2w volumetry, DW-MRI and DCE-MRI for response assessment after neo-adjuvant chemoradiation in locally advanced rectal cancer. Acta Oncol 54(10):1729–1736