Fréchet distance with speed limits

Computational Geometry - Tập 44 - Trang 110-120 - 2011
Anil Maheshwari1, Jörg-Rüdiger Sack1, Kaveh Shahbaz1, Hamid Zarrabi-Zadeh1
1School of Computer Science, Carleton University, Ottawa, Ontario K1S 5B6, Canada

Tài liệu tham khảo

Alt, 2003, Matching planar maps, J. Algorithms, 49, 262, 10.1016/S0196-6774(03)00085-3 Alt, 1995, Computing the Fréchet distance between two polygonal curves, Internat. J. Comput. Geom. Appl., 5, 75, 10.1142/S0218195995000064 Chambers, 2010, Homotopic Fréchet distance between curves or, walking your dog in the woods in polynomial time, Comput. Geom. Theory Appl., 43, 295, 10.1016/j.comgeo.2009.02.008 Cole, 1987, Slowing down sorting networks to obtain faster sorting algorithms, J. ACM, 34, 200, 10.1145/7531.7537 Cook, 2008, Geodesic Fréchet distance inside a simple polygon, vol. 5664, 193 Cook, 2009, Shortest path problems on a polyhedral surface, vol. 5664, 156 Efrat, 2002, New similarity measures between polylines with applications to morphing and polygon sweeping, Discrete Comput. Geom., 28, 535, 10.1007/s00454-002-2886-1 Jiang, 2008, Protein structure–structure alignment with discrete Fréchet distance, J. Bioinform. Comput. Biol., 6, 51, 10.1142/S0219720008003278 A. Maheshwari, J.-R. Sack, K. Shahbaz, H. Zarrabi-Zadeh, Fréchet distance with speed limits, Technical Report TR-10-08, School of Computer Science, Carleton University, 2010. A. Maheshwari, J. Yi, On computing Fréchet distance of two paths on a convex polyhedron, in: Proc. 21st European Workshop Comput. Geom., 2005, pp. 41–44. Megiddo, 1983, Applying parallel computation algorithms in the design of serial algorithms, J. ACM, 30, 852, 10.1145/2157.322410 Pelletier E. Sriraghavendra, K. Karthik, C. Bhattacharyya, Fréchet distance based approach for searching online handwritten documents, in: Proc. 9th Internat. Conf. Document Anal. Recognition, 2007, pp. 461–465. Tarjan, 1983