Fourier's law and many-body quantum systems

Comptes Rendus Physique - Tập 20 - Trang 442-448 - 2019
Christian B. Mendl1
1Technische Universität Dresden, Institute of Scientific Computing, Zellescher Weg 12-14, 01069 Dresden, Germany

Tài liệu tham khảo

Sakurai, 2017 Griffiths, 2004 Bruus, 2004, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction von Neumann, 1932 Green, 1954, Markoff random processes and the statistical mechanics of time-dependent phenomena, II: irreversible processes in fluids, J. Chem. Phys., 22, 398, 10.1063/1.1740082 Kubo, 1957, Statistical-mechanical theory of irreversible processes, I: general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn., 12, 570, 10.1143/JPSJ.12.570 Fehske, 2008 Avella, 2013 White, 1992, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., 69, 2863, 10.1103/PhysRevLett.69.2863 White, 1993, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B, 48, 10345, 10.1103/PhysRevB.48.10345 Schollwöck, 2005, The density-matrix renormalization group, Rev. Mod. Phys., 77, 259, 10.1103/RevModPhys.77.259 Schollwöck, 2011, The density-matrix renormalization group in the age of matrix product states, Ann. Phys., 326, 96, 10.1016/j.aop.2010.09.012 Verstraete, 2008, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys., 57, 143, 10.1080/14789940801912366 Hackbusch, 2012, Tensor Spaces and Numerical Tensor Calculus, 10.1007/978-3-642-28027-6 Vidal, 2003, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.147902 Vidal, 2008, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.110501 Stoudenmire, 2010, Minimally entangled typical thermal state algorithms, New J. Phys., 12, 10.1088/1367-2630/12/5/055026 Barthel, 2013, Precise evaluation of thermal response functions by optimized density matrix renormalization group schemes, New J. Phys., 15, 10.1088/1367-2630/15/7/073010 Eisert, 2010, Area laws for the entanglement entropy, Rev. Mod. Phys., 82, 277, 10.1103/RevModPhys.82.277 Hubig, 2017, Generic construction of efficient matrix product operators, Phys. Rev. B, 95, 10.1103/PhysRevB.95.035129 Haegeman, 2016, Unifying time evolution and optimization with matrix product states, Phys. Rev. B, 94, 10.1103/PhysRevB.94.165116 Bohrdt, 2017, Scrambling and thermalization in a diffusive quantum many-body system, New J. Phys., 19, 10.1088/1367-2630/aa719b Lundstrom, 2009 Snoke, 2011, The quantum Boltzmann equation in semiconductor physics, Ann. Phys., 523, 87, 10.1002/andp.201000102 Fürst, 2012, Matrix-valued Boltzmann equation for the Hubbard chain, Phys. Rev. E, 86, 10.1103/PhysRevE.86.031122 Lindblad, 1976, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48, 119, 10.1007/BF01608499 Prosen, 2011, Exact nonequilibrium steady state of a strongly driven open XXZ chain, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.137201 Prosen, 2014, Exact nonequilibrium steady state of an open Hubbard chain, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.030603 Žnidarič, 2016, Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.040601 Bhaseen, 2015, Energy flow in quantum critical systems far from equilibrium, Nat. Phys., 11, 509, 10.1038/nphys3320