Toán tử thần kinh Fourier với điều kiện biên cho việc dự đoán hiệu quả dòng chảy ổn định quanh cánh máy bay

Springer Science and Business Media LLC - Tập 44 - Trang 2019-2038 - 2023
Yuanjun Dai1, Yiran An1, Zhi Li1, Jihua Zhang2, Chao Yu2
1Department of Machanics and Engineering Science, College of Engineering, Peking University, Beijing, China
2Beijing Institute of Mechanical and Electrical Engineering, Beijing, China

Tóm tắt

Một phương pháp dự đoán dòng chảy ổn định quanh cánh máy bay hiệu quả dựa trên toán tử thần kinh Fourier (FNO) được đề xuất, đây là một khung mạng thần kinh mới. Những lý do lý thuyết và kết quả thực nghiệm được cung cấp nhằm hỗ trợ cho sự cần thiết và hiệu quả của các cải tiến được thực hiện đối với FNO, bao gồm việc sử dụng một toán tử thần kinh nhánh bổ sung để gần đúng đóng góp của các điều kiện biên vào các giải pháp ổn định. Phương pháp được đề xuất hoạt động nhanh hơn nhiều lần so với các phương pháp số truyền thống. Các dự đoán cho dòng chảy quanh các cánh máy bay và hình elip cho thấy độ chính xác vượt trội và tốc độ ấn tượng của phương pháp mới này. Hơn nữa, đặc tính siêu phân giải zero-shot cho phép phương pháp được đề xuất vượt qua các giới hạn trong việc dự đoán dòng chảy quanh cánh máy bay với lưới tọa độ Cartesian, từ đó nâng cao độ chính xác ở vùng gần tường. Không còn nghi ngờ gì nữa, tốc độ và độ chính xác chưa từng có trong việc dự đoán dòng chảy ổn định quanh cánh máy bay mang lại lợi ích lớn cho thiết kế và tối ưu hóa cánh máy bay.

Từ khóa

#Toán tử thần kinh Fourier #dòng chảy ổn định #điều kiện biên #dự đoán #thiết kế cánh máy bay

Tài liệu tham khảo

KRIZHEVSKY, A., SUTSKEVER, I., and HINTON, G. E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90 (2017) DEVLIN, J., CHANG, M., LEE, K., and TOUTANOVA, K. BERT: pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Minneapolis, 4171–4186 (2019) DAHL, G. E., YU, D., DENG, L., and ACERO, A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 20(1), 30–42 (2012) WU, H., LIU, X., AN, W., CHEN, S., and LYU, H. A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils. Computers & Fluids, 198, 104393 (2020) HUI, X., BAI, J., WANG, H., and ZHANG, Y. Fast pressure distribution prediction of airfoils using deep learning. Aerospace Science and Technology, 105, 105949 (2020) LI, K., KOU, J., and ZHANG, W. Unsteady aerodynamic reduced-order modeling based on machine learning across multiple airfoils. Aerospace Science and Technology, 119, 107173 (2021) WAN, Z. Y., VLACHAS, P., KOUMOUTSAKOS, P., and SAPSIS, T. Data-assisted reduced-order modeling of extreme events in complex dynamical systems. PLoS One, 13(5), e0197704 (2018) VLACHAS, P. R., BYEON, W., WAN, Z. Y., SAPSIS, T., and KOUMOUTSAKOS, P. Datadriven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 447(2213), 20170844 (2018) GUO, X., LI, W., and IORIO, F. Convolutional neural networks for steady flow approximation. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, 481–490 (2016) BHATNAGAR, S., AFSHAR, Y., PAN, S., DURAISAMY, K., and KAUSHIK, S. Prediction of aerodynamic flow fields using convolutional neural networks. Computational Mechanics, 64, 525–545 (2019) THUEREY, N., WEIßENOW, K., PRANTL, L., and HU, X. Deep learning methods for Reynolds-averaged Navier-Stokes simulations of airfoil flows. AIAA Journal, 58, 25–36 (2020) GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D., OZAIR, S., COURVILLE, A., and BENGIO, Y. Generative adversarial nets. Proceedings of the 27th International Conference on Neural Information Processing Systems, MIT Press, Cambridge, 2672–2680 (2014) HOCHREITER, S. and SCHMIDHUBER, J. Long short-term memory. Neural Computation, 9(8), 1735–1780 (1997) RONNEBERGER, O., FISCHER, P., and BROX, T. U-net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention MICCAI-2015, Springer, Berlin, 234–241 (2015) PFAFF, T., FORTUNATO, M., SANCHEZ-GONZALEZ, A., and BATTAGLIA, P. Learning mesh-based simulation with graph networks. arXiv Preprint, arXiv: 2010.03409 (2020) https://doi.org/10.48550/arXiv.2010.03409 BELBUTE-PERES, F., ECONOMON, T. D., and KOLTER, J. Z. Combining differentiable PDE solvers and graph neural networks for fluid flow prediction. arXiv Preprint, arXiv: 2007.04439v1 (2020) https://doi.org/10.48550/arXiv.2007.04439 SANCHEZ-LENGELING, B., REIF, E., PEARCE, A., and WILTSCHKO, A. A gentle introduction to graph neural networks. Distill (2021) https://distill.pub/2021/gnn-intro/ LI, Q., HAN, Z., and WU, X. Deeper insights into graph convolutional networks for semi-supervised learning. Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AIAA Press, New Orleans, 3538–3545 (2018) RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal Computational Physics, 378, 686–707 (2019) RAISSI, M., WANG, Z., TRIANTAFYLLOU, M. S., and KARNIADAKIS, G. E. Deep learning of vortex-induced vibrations. Journal of Fluid Mechanics, 861, 119–137 (2019) HE, Y. C., WANG, Z. C., XIANG, H., JIANG, X. M., and TANG, D. W. An artificial viscosity augmented physics-informed neural network for incompressible flow. Applied Mathematics and Mechanics (English Edition), 44(7), 1101–1110 (2023) https://doi.org/10.1007/s10483-023-2993-9 MAO, Z., JAGTAP, A. D., and KARNIADAKIS, G. E. Physics-informed neural networks for high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360, 112789 (2020) YIN, M., ZHENG, X., HUMPHREY, J. D., and KARNIADAKIS, G. E. Non-invasive inference of thrombus material properties with physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 375, 113603 (2021) LUCOR, D., AGRAWAL, A., and SERGENT, A. Physics-aware deep neural networks for surrogate modeling of turbulent natural convection. arXiv Preprint, arXiv: 2103.03565 (2021) https://doi.org/10.48550/arXiv.2103.03565 EIVAZI, H., TAHANI, M., SCHLATTER, P., and VINUESA, R. Physics-informed neural networks for solving Reynolds-averaged Navier-Stokes equations. Physics of Fluids, 34, 075117 (2022) WANG, S., TENG, Y., and PERDIKARIS, P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43, 3055–3081 (2021) WANG, S., YU, X., and PERDIKARIS, P. When and why PINNs fail to train: a neural tangent kernel perspective. Journal Computational Physics, 449, 110768 (2022) SUN, L., GAO, H., PAN, S., and WANG, J. X. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Computer Methods in Applied Mechanics and Engineering, 361, 112732 (2020) LU, L., JIN, P., and KARNIADAKIS, G. E. DeepONet: learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv Preprint, arXiv: 1910.03193v3 (2019) https://doi.org/10.48550/arXiv.1910.03193 BHATTACHARYA, K., HOSSEINI, B., KOVACHKI, N. B., and STUART, A. M. Model reduction and neural networks for parametric PDEs. SMAI Journal of Computational Mathematics, 7, 121–157 (2021) LI, Z., KOVACHKI, N., AZIZZADENESHELI, K., LIU, B., BHATTACHARYA, K., STUART, A., and ANANDKUMAR, A. Neural operator: graph kernel network for partial differential equations. arXiv Preprint, arXiv: 2003.03485 (2020) https://doi.org/10.48550/arXiv.2003.03485 LI, Z., KOVACHKI, N., AZIZZADENESHELI, K., LIU, B., BHATTACHARYA, K., STUART, A., and ANANDKUMAR, A. Fourier neural operator for parametric partial differential equations. arXiv Preprint, arXiv: 2010.08895 (2020) https://doi.org/10.48550/arXiv.2010.08895 PATEL, R. G., TRASK, N. A., WOOD, M. A., and CYR, E. C. A physics-informed operator regression framework for extracting data-driven continuum models. Computer Methods in Applied Mechanics and Engineering, 373, 113500 (2021) KOVACHKI, N., LANTHALER, S., and MISHRA, S. On universal approximation and error bounds for Fourier neural operators. Journal of Machine Learning Research, 22, 1–76 (2021) HE, K., ZHANG, X., REN, S., and SUN, J. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, 770–778 (2016) LI, Z., ZHENG, H., and KOVACHKI, N. Physics-informed neural operator for learning partial differential equations. arXiv Preprint, arXiv: 2111.03794 (2021) https://doi.org/10.48550/arXiv.2111.03794 LI, Z., PENG, W., YUAN, Z., and WANG, J. Fourier neural operator approach to large eddy simulation of three-dimensional turbulence. Theoretical and Applied Mechanics Letters, 12(6), 100389 (2022) WEN, G., LI, Z., AZIZZADENESHELI, K., ANANDKUMAR, A., and BENSON, M. B. U-FNO- an enhanced Fourier neural operator based deep-learning model for multiphase flow. Advances in Water Resources, 163, 104180 (2022) GUAN, S., HSU, K. T., and CHITNIS, P. Fourier neural operator network for fast photoacoustic wave simulations. Algorithms, 16, 124 (2023) ZHONG, M., YAN, Z., and TIAN, S. Data-driven parametric soliton-rogon state transitions for nonlinear wave equations using deep learning with Fourier neural operator. Communications in Theoretical Physics, 75, 025001 (2023) ZHANG, Q., MILLETARI, M., ORUGANTI, Y., and WITTE, P. Surrogate modeling for methane dispersion simulations using fourier neural operator. NeurIPS 2022 Workshop on Tackling Climate Change with Machine Learning. JOHNNY, W., BRIGIDO, H., LADEIRA, M., and SOUZA, J. Fourier neural operator for image classification. 17th Iberian Conference on Information Systems and Technologies (CISTI), IEEE, Madrid, 1–6 (2022)