Four-wave mixing spectroscopy of aqueous suspensions of single-wall carbon nanotubes in the ranges of 0.1–10 and 100–250 cm−1
Tóm tắt
Distinctive optical properties of single-wall carbon nanotubes (SWNT) are highly sensitive to variations in the environment. Here, we have studied SWNT in aqueous suspensions at a low (less than 0.1 µg ml−1) concentration by four-wave mixing (FWM) spectroscopy in the spectral bands of 0.1 to 10 cm−1 (≈300 GHz) and 100 to 250 cm−1 (3 to 7.5 THz). We directly investigated the hydration layers around SWNT. A comparison of the FWM spectra of an SWNT aqueous suspension and Milli-Q water shows a considerable increase in the intensity of low-frequency Raman modes, which are attributed to the rotational transitions of H2O2 and H2O molecules. We explain the observed phenomenon by the hydrogen peroxide production and formation of a low-density depletion layer at the water-nanotube interface. We have observed several SWNT radial breathing modes ω
RBM =118.5, 164.7, and 233.5 cm−1 in an SWNT aqueous suspension and estimated the corresponding SWNT diameters as ≈2.0, 1.5, and 1 nm.
Tài liệu tham khảo
M. S. Dresselhaus, G. Dresselhaus, and P.S. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, N.Y., 1996).
K. Kelley, P. E. Pehrsson, L. M. Ericson, and W. Zhao, “Optical pH Response of DNAWrapped HiPco Carbon Nanotubes,” J. Nanosci. Nanotech. 5(7), 1041 (2005).
M. Zheng and B. A. Diner, “Solution Redox Chemistry of Carbon Nanotubes,” J. Am. Chem. Soc. 126(47), 15490 (2004).
A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R.O. Loutfy, and C. J. Burnham, “Anomalously Soft Dynamics of Water in a Nanotube: A Revelation of Nanoscale Confinement,” Phys. Rev. Lett. 93(3), 035503 (2004).
J. Marti and M. C. Gordillo, “Temperature Effects on the Static and Dynamic Properties of Liquid Water Inside Nanotubes,” Phys. Rev. E. 64(2), 021504 (2001).
D. J. Mann and M.D. Halls, “Water Alignment and Proton Conduction Inside Carbon Nanotubes,” Phys. Rev. Lett. 90(19), 195503 (2003).
A. F. Bunkin and S. M. Pershin, “Observation of Water Isotopes and Spin-Isomers Rotational Transitions Induced by Four-Wave Mixing in Liquid,” J. Raman Spectrosc. 39(6), 726 (2008).
A. F. Bunkin, S. M. Pershin, A. A. Nurmatov, and A.P. Gorchakov, “Coherent Laser Spectroscopy of Molecular Motions in Liquids in the Maser Range,” J. Raman Spectrosc. 38(8), 973 (2007).
A. F. Bunkin and S. M. Pershin, “Four-Wave Mixing Spectroscopy ofHydration Layers in Biopolymers and Carbon Nanotubes Aqueous Solutions,” J. Raman Spectrosc. 40(7), 836 (2009).
A. F. Bunkin, A. A. Nurmatov, S. I. Lebedenko, and S. M. Pershin, “Low-Frequency Four-Photon Spectroscopy of Tetrachloroethane and Tetrabromoethane Molecule Rotations in Liquid Phase,” Phys. Wave Phenom. 14(1), 19 (2006).
S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Light Scattering Spectroscopy (Nauka, Moscow, 1981) [in Russian].
A. F. Bunkin and A. A. Nurmatov, “Four-Photon Polarization Spectroscopy of D2O Intermolecular Vibrations,” Laser Phys. 13(3), 328 (2003).
E. G. Gamaly and T.W. Ebbesen, “Mechanism of Carbon Nanotube Formation in the Arc Discharge,” Phys. Rev. B. 52(3), 2083 (1995).
J. H. J. Scott and S. A. Majetich, “Morphology, Structure, and Growth of Nanoparticles Produced in a Carbon Arc,” Phys. Rev. B. 52(17), 12564 (1995).
L.S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L.R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennison, R.N. Tolchenov, R.A. Toth, J.V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer. 96(2), 139 (2005); www.elsevier. com/locate/jqsrt
I. L. Fabelinskii, “Spectra of Molecular Light Scattering and Some of Their Applications,” Phys.-Usp. 37(9), 821 (1994).
Y. Yamakoshi, Sh. Sueyoshi, K. Fukuhara, and N. Miyata, “OH and O −2 Generation in Aqueous C60 and C70 Solutions by Photoirradiation: An EPR Study,” J. Am. Chem. Soc. 120(47), 12363 (1998).
C. M. Sayes, J. D. Fortner, W. Guo, D. Lyon, A. M. Boyd, K.D. Ausman, Y. J. Tao, B. Sitharaman, L. J. Wilson, J.B. Hughes, J. L. West, and V. L. Colvin, “The Differential Cytotoxicity of Water-Soluble Fullerenes,” Nano Lett. 4(10), 1881 (2004).
T. A. Hilder and J.M. Hill, “Modelling the Encapsulation of the Anticancer Drug Cisplatin into Carbon Nanotubes,” Nanotechnology. 18(27), 275704 (2007).
C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M.A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett. 93(14), 147406 (2004).
M. J. O’Connell, S. Sivaram, and S.K. Doorn, “Near-Infrared Resonance Raman Excitation Profile Studies of Single-Walled Carbon Nanotube Intertube Interactions: A Direct Comparison of Bundled and Individually Dispersed HiPco Nanotubes,” Phys. Rev. B. 69(23), 235415 (2004).
D. Chandler, “Interfaces and the Driving Force of Hydrophobic Assembly,” Nature. 437(9), 640 (2005).
N. Giovambattista, P. G. Debenedetti, and P. J. Rossky, “Hydration Behavior under Confinement by Nanoscale Surfaces with Patterned Hydrophobicity and Hydrophilicity,” J. Phys. Chem. C. 111(3), 1323 (2007).
A. Poynor, L. Hong, I. K. Robinson, S. Granick, Zh. Zhang, and P. A. Fenter, “How Water Meets a Hydrophobic Surface,” Phys. Rev. Lett. 97(26), 266101 (2006).
T. R. Jensen, M.Ø. Jensen, N. Reitzel, K. Balashev, G. H. Peters, K. Kjaer, and T. Bjørnholm, “Water in Contact with Extended Hydrophobic Surfaces: Direct Evidence of Weak Dewetting,” Phys. Rev. Lett. 90(8), 086101 (2003).