Forward and reverse genetics approaches for combined stress tolerance in rice
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdoli, M., & Saeidi, M. (2012). Effects of water deficiency stress during seed growth on yield and its components, germination and seedling growth parameters of some wheat cultivars. International Journal of Agriculture and Crop Sciences, 4(15), 1110–1118.
Acevedo, E. (1993). Potential of carbon isotope discrimination as a selection criterion in barley breeding. In J. R. Ehleringer, A. E. Hall, & G. D. Farquhar (Eds.), Stable isotopes and plant carbon-water relations (pp. 399–417). London: Academic Press.
Acquaah, M. (2014). Construct Measurement in Strategic Management Research in Africa. In Zoogah, D. B. (ed.) Advancing Research Methodology in the African Context: Techniques, Methods, and Designs (Research Methodology in Strategy and Management, Volume 10, pp. 1–20). Emerald Group Publishing Limited.
Aharon, R., Shahak, Y., Wininger, S., Bendov, R., Kapulnik, Y., & Galili, G. (2003). Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. The Plant Cell, 15(2), 439–447.
Ali, J., Xu, J.-L., Gao, M.-Y., Ma, X.-F., Meng, L.-J., Wang, Y., et al. (2017). Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). PLoS ONE. https://doi.org/10.1371/journal.pone.0172515 .
Araus, J. L., Slafer, G. A., Reynolds, M. P., & Royo, C. (2002). Plant breeding and drought in C3 cereals: What should we breed for? Annals of Botany, 89(7), 925–940.
Bahuguna, R. N., & Jagadish, K. S. N. (2015). Temperature regulation of plant phenological development. Environmental and Experimental Botany, 111, 83–90.
Bahuguna, R. N., Jagadish, K. S. V., Coast, O., & Wassmann, R. (2014). Plant abiotic stress: Temperature extremes. In N. Van Alfen (Ed.), Encyclopedia of agriculture and food systems (Vol. 4, pp. 330–334). San Diego: Elsevier.
Barnabas, B., Jager, K., & Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31(1), 11–38.
Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240–244.
Bing, Y. I., Zhou, Y. F., Gao, M. Y., Zhang, Z., Yi, H. A. N., Yang, G. D., et al. (2014). Effect of drought stress during flowering stage on starch accumulation and starch synthesis enzymes in sorghum grains. Journal of Integrative Agriculture, 13(11), 2399–2406.
Bray, E. A., et al. (2000). Responses to abiotic stresses. In W. Gruissem, et al. (Eds.), Biochemistry and molecular biology of plants (pp. 1158–1249). Rockville: American Society of Plant Physiologists.
Cabrera-Bosquet, L., Crossa, J., Zitzewitz, V. J., Serret, M. D., & Luis Araus, J. (2012). High-throughput phenotyping and genomic selection: The frontiers of crop breeding converge. Journal of Integrative Plant Biology, 54, 312–320.
Campo, S., Baldrich, P., Messeguer, J., Lalanne, E., Coca, M., & San Segundo, B. (2014). Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiology, 165, 688–704.
Checchetto, V., Formentin, E., Carraretto, L., Segalla, A., Giacometti, G. M., Szabo, I., et al. (2013). Functional characterization and determination of the physiological role of a calcium-dependent potassium channel from cyanobacteria. Plant Physiology, 162(2), 953–964.
Cheng, Z., Targolli, J., Huang, X., & Wu, R. (2002). Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Molecular Breeding, 10, (1–2), 71–82.
Christensen, J. H., & Christensen, O. L. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 7–30.
Coupel-Ledru, A., Lebon, E., Christophe, A., Gallo, A., Gago, A., Pantin, F., et al. (2016). Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proceedings of the National Academy of Sciences of the United States of America, 113(32), 8963–8968.
Dinesh, A., Hariprasanna, K., Vanisri, S., Sujatha, M., & Dangi, K. S. (2017). Insilico identification of genes for combined drought and salinity stress in rice (Oryza sativa L.). Advances in Research, 9(1), 1–8.
Duan, J., & Cai, W. (2012). OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS ONE, 7(9), 45117.
Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., et al. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. The Plant Journal, 33(4), 751–763.
Ebrahim, M. K., Zingsheim, O., El-Shourbagy, M. N., Moore, P. H., & Komor, E. (1998). Growth and sugar storage in sugarcane grown at temperatures below and above optimum. Journal of Plant Physiology, 153(5–6), 593–602.
El Soda, M., Nadakuduti, S. S., Pillen, K., & Uptmoor, R. (2010). Stability parameter and genotype mean estimates for drought stress effects on root and shoot growth of wild barley pre-introgression lines. Molecular Breeding, 26, 583–593.
Essamine, J., Ammar, S., & Bouzid, S. (2010). Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussion and mechanisms of defense. Journal of Biological Sciences, 10(6), 565–572.
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., et al. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant, 8, 1147.
FAO. (2016). FAOSTAT. Rome: Food and Agriculture Organization of the United Nations.
FAO. (2017). FAOSTAT. Rome: Food and Agriculture Organization of the United Nations.
Farooq, M., Hussain, M., & Siddique, K. H. M. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33, 331–349.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185–212.
Fukao, T., & Xiong, L. (2013). Genetic mechanisms conferring adaptation to submergence and drought in rice: Simple or complex? Current Opinion in Plant Biology, 16, 196–204.
Gao, J. P., Chao, D. Y., & Lin, H. X. (2007). Understanding abiotic stress tolerance mechanisms: Recent studies on stress response in rice. Journal of Integrative Plant Biology, 49(6), 742–750.
Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Do Choi, Y., Kochian, L. V., et al. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences, 99(25), 15898–15903.
Giri, J., Vij, S., Dansana, P. K., & Tyagi, A. K. (2011). Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytologist, 191(3), 721–732.
Guo, L., Wang, Z. Y., Lin, H., Cui, W. E., Chen, J., Liu, M., et al. (2006). Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Research, 16(3), 277.
Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., et al. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60(12), 3531–3544.
Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014 , 1–18.
Gupta, B., Tripathi, A. K., Joshi, R., Pareek, A., & Singla-Pareek, S. L. (2015a). Designing climate-smart future crops employing signal transduction components. Pandey, Girdhar K. (Ed). In Elucidation of abiotic stress signaling in plants (pp. 393–413). New York: Springer.
Gupta, B. K., Sahoo, K. K., Ghosh, A., Tripathi, A. K., Anwar, K., Das, P., et al. (2018). Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant, Cell and Environment, 41(5), 1186–1200.
Gupta, D. K., Palma, J. M., & Corpas, F. J. (Eds.). (2015b). Reactive oxygen species and oxidative damage in plants under stress (pp. 1–22). Berlin: Springer.
Gupta, P., Nutan, K. K., Singla-Pareek, S. L., & Pareek, A. (2017). Abiotic stresses cause differential regulation of alternative splice forms of GATA transcription factor in rice. Frontiers in Plant Science, 8, 1944.
Gupta, P., Sharma, R., Sharma, M. K., Sharma, M. P., Satpute, G. K., Garg, S., et al. (2015c). Soybean signaling crosstalk between biotic and abiotic stresses. In M. Miransari (Ed.), Environmental stress in Soybean production. London: Academic Press.
Hakata, M., Kuroda, M., Miyashita, T., Yamaguchi, T., Mikiko Kojima, M., Sakakibara, H., et al. (2012). Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnology Journal, 10, 1110–1117.
Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., & Masmoudi, K. (2011). Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signaling & Behavior, 6(10), 1503–1509.
Hasan, M. R., Ghosh, A., Pareek, A., & Singla-Pareek, S. L. (2016). Glyoxalase pathway and drought stress tolerance in plants. In M. A. Hossain, S. H. Wani, S. Bhattachjee, D. J. Burritt, & L. S. P. Tran (Eds.), Drought stress tolerance in plants (Vol 1): Physiology and Biochemistry. New York: Springer. (In Press).
Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684.
Hong, Y., Zhang, H., Huang, L., Li, D., & Song, F. (2016). Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science, 7, 4.
Hsieh, T. H., Li, C. W., Su, R. C., Cheng, C. P., Tsai, Y. C., & Chan, M. T. (2010). A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta, 231(6), 1459–1473.
Hu, T., Zhu, S., Tan, L., Qi, W., He, S., & Wang, G. (2016). Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environmental and Experimental Botany, 123, 68–77.
Huang, X. Y., Chao, D. Y., Gao, J. P., Zhu, M. Z., Shi, M., & Lin, H. X. (2009). A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development, 23(15), 1805–1817.
Hundertmark, M., & Hincha, D. K. (2008). LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 9(1), 118.
IPCC. (2007). In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (p. 976). Cambridge: Cambridge University Press.
IPCC. (2013). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535). Cambridge: Cambridge University Press.
IPCC. (2014). In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 151). Geneva: IPCC.
IPCC. (2018). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, et al. (Eds.), Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (p. 32). Geneva: World Meteorological Organization.
Jagadish, S. V. K., Sumfleth, K., Howell, G., Redona, E., Wassmann, R., & Heuer, S. (2010). Temperature effects on rice: significance and possible adaptation. In R. Wassmann (Ed.) 2010 Advanced technologies of rice production for coping with climate change: ‘No Regret’ options for adaptation and mitigation and their potential uptake. Proceedings of the workshop advanced technologies of rice production for coping with climate change: ‘no regret’ options for adaptation and mitigation and their potential uptake held on 23–25 June 2010 in Los Banos, Philippines. IRRI Limited Proceedings No. 16. Los Banos (Philippines) (p. 81). International Rice Research Institute.
Jang, I. C., Oh, S. J., Seo, J. S., Choi, W. B., Song, S. I., Kim, C. H., et al. (2003). Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiology, 131(2), 516–524.
Jankowicz-Cieslak, J., & Till, B. J. (2015). Forward and reverse genetics in crop breeding. In J. M. Al-Khayri, et al. (Eds.), Advances in plant breeding strategies: Breeding, biotechnology and molecular tools. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-22521-0_8 .
Joshi, R., Gupta, B., Pareek, A., Singh, M. B., & Singla-Pareek, S. L. (2016a). Functional genomics approach toward dissecting out abiotic stress tolerance trait in plants. In V. R. Rajpal, D. Sehgal, & S. N. Raina (Eds.), Genomics assisted breeding for crop improvement: Abiotic stress tolerance. New York: Springer.
Joshi, R., Prashat, R., Sharma, P. C., Singla-Pareek, S. L., & Pareek, A. (2016b). Physiological characterization of gamma-ray induced mutant population of rice to facilitate biomass and yield improvement under salinity stress. Indian Journal of Plant Physiology, 21(4), 545–555.
Joshi, R., Sahoo, K. K., Tripathi, A. K., Kumar, R., Gupta, B. K., Pareek, A., et al. (2018a). Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant, Cell and Environment, 41(5), 936–946.
Joshi, R., Singla-Pareek, S. L. & Pareek, A. (2018a). Engineering abiotic stress response in plants for biomass production. Journal of Biological Chemistry, pp.jbc-TM117.
Kadam, N., Yin, X., Bindraban, P., Struik, P., & Jagadish, K. S. V. (2015). Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice? Plant Physiology, 167, 1389–1401.
Kadam, N. N., Tamilselvan, A., Lawas, L. M. F., Quinones, C., Bahuguna, R. N., Thomson, M. J., et al. (2017). Genetic control of plasticity in root morphology and anatomy of rice in response to water-deficit. Plant Physiology, 174, 2302–2315.
Kadam, N. N., Xiao, G., Melgar, R. J., Bahuguna, R. N., Quinones, C., Tamilselvan, A., et al. (2014). Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. In D. Sparks (Ed.), Advances in agronomy (pp. 111–156). London: Academic Press.
Kato, Y., Kamoshita, A., & Yamagishi, J. (2008). Preflowering abortion reduces spikelet number in upland rice under water stress. Crop Science, 48, 2389–2395.
Khanna-Chopra, R., Semwal, V., Lakra, N., & Pareek, A. (2018). Proline—A key regulator conferring plant tolerance to salinity and drought. Mirza Hasanuzzaman, Masayuki Fujita, Hirosuke Oku, M. Tofazzal Islam (Ed.). In Plant tolerance to environmental stress: Role of exogenous phytoprotectants (pp. 59–72). Boca Raton: CRC Press.
Kim, K. (1983). Studies on the effect of temperature during the reduction division and the grain filling stage in rice plants. II. Effect of air temperature at grain filling stage in indica-japonica crosses. Korean Journal of Crop Science, 28, 58–75.
Knight, H., & Knight, M. R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends in Plant Science, 6(6), 262–267.
Król, A. (2013). The growth and water uptake by yellow seed and black seed rape depending on the state of soil compaction. Ph.D. thesis, Bohdan Dobrzanski Institute of Agrophysics. PAS, Lublin, Poland.
Kumar, M., Lee, S. C., Kim, J. Y., Kim, S. J., & Kim, S. R. (2014). Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Journal of Plant Biology, 57(6), 383–393.
Kumar, M. N., Jane, W. N., & Verslues, P. E. (2013). Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response. Plant Physiology, 161(2), 942–953.
Kushwaha, H.R., Singla-Pareek, S.L. & Pareek, A. (2014). Putative osmosensor–OsHK3b–a histidine kinase protein from rice shows high structural conservation with its ortholog AtHK1 from Arabidopsis. Journal of Biomolecular Structure and Dynamics, 32(8), 1318–1332.
Lakra, N., Nutan, K. K., Das, P., Anwar, K., Singla-Pareek, S. L., & Pareek, A. (2015). A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. Journal of Plant Physiology, 176, 36–46.
Li, D. D., Xia, X. L., Yin, W. L., & Zhang, H. C. (2013). Two poplar calcineurin B-like proteins confer enhanced tolerance to abiotic stresses in transgenic Arabidopsis thaliana. Biologia Plantarum, 57(1), 70–78.
Li, J., Wang, J., & Zeigler, R. S. (2014). The 3000 rice genomes project: New opportunities and challenges for future rice research. GigaScience, 3, 8.
Lian, H. L., Yu, X., Ye, Q., Ding, X. S., Kitagawa, Y., Kwak, S. S., et al. (2004). The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology, 45(4), 481–489.
Lipiec, J., Doussan, C., Nosalewicz, A., & Kondracka, K. (2013). Effect of drought and heat stresses on plant growth and yield: A review. International Agrophysics, 27(4), 463–477.
Liu, A. L., Zou, J., Liu, C. F., Zhou, X. Y., Zhang, X. W., Luo, G. Y., et al. (2013a). Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice. BMB Reports, 46(1), 31.
Liu, C., Mao, B., Ou, S., Wang, W., Liu, L., Wu, Y., et al. (2014a). OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Molecular Biology, 84(1–2), 19–36.
Liu, G., Li, X., Jin, S., Liu, X., Zhu, L., Nie, Y., et al. (2014b). Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE, 9(1), 86895.
Liu, J., & Zhu, J. K. (1997). An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proceedings of the National Academy of Sciences, 94(26), 14960–14964.
Liu, L. L., Ren, H. M., Chen, L. Q., Wang, Y., & Wu, W. H. (2013b). A protein kinase, calcineurin B-like protein-interacting protein kinase9, interacts with calcium sensor calcineurin B-like protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiology, 161(1), 266–277.
Mallikarjuna, G., Mallikarjuna, K., Reddy, M. K., & Kaul, T. (2011). Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnology Letters, 33(8), 1689–1697.
Marti, M. C., Stancombe, M. A., & Webb, A. A. (2013). Cell-and stimulus type-specific intracellular free Ca2+ signals in Arabidopsis. Plant Physiology, 163(2), 625–634.
Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16, 237–251.
Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15–19.
Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.
Morita, S., Shiratsuchi, H., Takanashi, J., & Fujita, K. (2004). Effects of high temperature on ripening in rice plants—Analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant. Japanese Journal of Crop Science, 73, 77–83.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
Nagato, K., & Ebata, M. (1965). Effect of high temperature during ripening period on the development and the quality of rice kernels. Proceedings of the Crop Science Society of Japan, 34, 5–65.
Nguyen, M. X., Moon, S., & Jung, K. H. (2013). Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots. Planta, 238(4), 669–681.
Nutan, K. K., Kumar, G., Lata Singla-Pareek, S., & Pareek, A. (2018). A salt overly sensitive pathway member from Brassica juncea BjSOS3 can functionally complement ΔAtsos3 in Arabidopsis. Current Genomics, 19(1), 60–69.
Ohnishi, T., Sugahara, S., Yamada, T., Kikuchi, K., Yoshiba, Y., Hirano, H. Y., et al. (2005). OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes & Genetic Systems, 80(2), 135–139.
Ouyang, S. Q., Liu, Y. F., Liu, P., Lei, G., He, S. J., Ma, B., et al. (2010). Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa L.) plants. The Plant Journal, 62(2), 316–329.
Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537.
Pareek, A., Singla, S. L., & Grover, A. (1995). Immunological evidence for accumulation of two high molecular weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Molecular Biology, 29, 293–301.
Pareek, A., Singla, S. L., & Grover, A. (1998). HSP 90 proteins in plants with special reference to rice system. Journal of Biosciences, 23, 361–367.
Pareek, A., Singla, S. L., Kush, A. K., & Grover, A. (1997). Distribution patterns of HSP 90 protein in rice. Plant Science, 125, 221–230.
Parry, M. A. J., Madgwick, P. J., Bayon, C., Tearall, K., Hernandez-Lopez, A., Baudo, M., et al. (2009). Mutation discovery for crop improvement. Journal of Experimental Botany, 60(10), 2817–2825.
Peng, Y., Lin, W., Cai, W., & Arora, R. (2007). Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta, 226(3), 729–740.
Phan, T. T. T., Ishibashi, Y., Miyazaki, M., Tran, H. T., Okamura, K., Tanaka, S., et al. (2013). High temperature-induced repression of the rice sucrose transporter (OsSUT1) and starch synthesis-related genes in sink and source organs at milky ripening stage causes chalky grains. Journal of Agronomy and Crop Science, 199(3), 178–188.
Praba, M. L., Cairns, J. E., Babu, R. C., & Lafitte, H. R. (2009). Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. Journal of Agronomy and Crop Science, 195(1), 30–46.
Rabbani, M. A., Maruyama, K., Abe, H., Khan, M. A., Katsura, K., Ito, Y., et al. (2003). Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiology, 133(4), 1755–1767.
Rang, Z. W., Jagadish, S. V. K., Zhou, Q. M., Craufurd, P. Q., & Heuer, S. (2011). Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany, 70, 58–65.
Reiser, V., Raitt, D. C., & Saito, H. (2003). Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. The Journal of Cell Biology, 161(6), 1035–1040.
Ristic, Z., & Cass, D. D. (1992). Chloroplast structure after water and high-temperature stress in two lines of maize that differ in endogenous levels of abscisic acid. International Journal of Plant Sciences, 153(2), 186–196.
Rizhsky, L., Liang, H., & Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130(3), 1143–1151.
Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134(4), 1683–1696.
Roberts, J. K., DeSimone, N. A., Lingle, W. L., & Dure, L. (1993). Cellular concentrations and uniformity of cell-type accumulation of two Lea proteins in cotton embryos. The Plant Cell, 5(7), 769–780.
Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., & Von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeumvulgare L.). Journal of Experimental Botany, 64(11), 3201–3212.
Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., & Izui, K. (2000). Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal, 23(3), 319–327.
Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., & Maeshima, M. (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology, 46(9), 1568–1577.
Saran, A., Dhakar, J., Singla-Pareek, S. L., & Pareek, A. (2017). Crosstalk between gibberellins and abiotic stress tolerance machinery in plants. Hoboken, NJ: Wiley.
Schulz, P., Herde, M., & Romeis, T. (2013). Calcium-dependent protein kinases: Hubs in plant stress signaling and development. Plant Physiology, 163(2), 523–530.
Shi, P., Zhu, Y., Tang, L., Chen, J., Sun, T., Cao, W., et al. (2016). Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environmental and Experimental Botany, 132, 28–41.
Shiri, M., Rabhi, M., El Amrani, A., & Abdelly, C. (2015). Cross-tolerance to abiotic stresses in halophytes: Application for phytoremediation of organic pollutants. Actaphysiologiae Plantarum, 37(10), 209.
Singh, B., Mishra, S., Bohra, A., Joshi, J., & Siddique, K. M. K. (2018). Crop phenomics for abiotic stress tolerance in crop plants. In S. H. Wani (Ed.), Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants (pp. 277–296). London: Academic Press.
Singh, M., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Reviews in Environmental Science & Biotechnology, 14(3), 407–426.
Singh, R., Singh, Y., Xalaxo, S., Verulkar, S., Yadav, N., Singh, S., et al. (2016). From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science, 242, 278–287.
Singla, S. L., Pareek, A., & Grover, A. (1997). Yeast HSP 104 homologue rice HSP 110 is developmentally- and stress-regulated. Plant Science, 125, 211–219.
Singla, S. L., Pareek, A., & Grover, A. (1998). Plant HSP 100 proteins with special reference to rice system. Journal of Biosciences, 23, 337–345.
Soda, N., Gupta, B. K., Anwar, K., & Sharan, A. (2018). Publisher correction: Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Scientific Reports, 8, 4072.
Soda, N., Singla-Pareek, S. L., & Pareek, A. (2016). Abiotic stress response in plants: Role of cytoskeleton. In N. Tuteja & S. S. Gill (Eds.), Abiotic stress response in plants. Hoboken: Wiley.
Song, Y., Jing, S., & Yu, D. (2009). Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis. Chinese Science Bulletin, 54, 4671.
Sreenivasulu, N., Sopory, S. K., & Kavi Kishor, P. B. (2007). Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene, 388(1–2), 1–13.
Suzuki, T., Eiguchi, M., Kumamaru, T., Satoh, H., Matsusaka, H., Moriguchi, K., et al. (2008). MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Molecular Genetic Genomics, 279, 213–223.
Taiz, L., & Zeiger, E. (2006). Plant physiology (4th ed.). Sunderland, MA: Sinauer Associates Inc Publishers.
Tran, L.-S. P., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences 104(51):20623–20628
Tyerman, S. D., Niemietz, C. M., & Bramley, H. (2002). Plant aquaporins: Multifunctional water and solute channels with expanding roles. Plant, Cell and Environment, 25(2), 173–194.
Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., & Shinozaki, K. (1999). A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. The Plant Cell 11(9), 1743.
Van Nguyen, N. & Ferrero, A. (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1), 1–9.
Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., & Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, 45(4), 523–539.
Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Biology, 42(1), 579–620.
Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 16(2), 123–132.
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223.
Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), 1–14.
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252.
Wang, X. S., Zhu, H. B., Jin, G. L., Liu, H. L., Wu, W. R., & Zhu, J. (2007). Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Science, 172(2), 414–420.
Wassmann, R., Jagadish, S. V. K., Sumfleth, K., Patha, H., Howell, G., Ismail, A., et al. (2009). Regional vulnerability of climate change impacts on asian rice production and scope for adaptation. Advances in Agronomy, 102, 91–133.
Wei, S., Hu, W., Deng, X., Zhang, Y., Liu, X., Zhao, X., et al. (2014). A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biology, 14(1), 133.
Winkel, T., Renno, J. F., & Payne, W. A. (1997). Effect of the timing of water deficit on growth, phenology and yield of pearl millet (Pennisetumglaucum (L.) R. Br.) grown in Sahelian conditions. Journal of Experimental Botany, 48, 1001–1009.
Wopereis, M. C. S., Kropff, M. J., Maligaya, A. R., & Tuong, T. P. (1996). Drought-stress responses of two lowland rice cultivars to soil water status. Field Crops Research, 46, 21–39.
Xiang, J., Ran, J., Zou, J., Zhou, X., Liu, A., Zhang, X., et al. (2013). Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Reports, 32(11), 1795–1806.
Xiang, Y., Tang, N., Du, H., Ye, H., & Xiong, L. (2008). Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology, 148(4), 1938–1952.
Xiong, H., Li, J., Liu, P., Duan, J., Zhao, Y., Guo, X., et al. (2014). Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE, 9(3), e92913.
Xu, D., Duan, X., Wang, B., Hong, B., Ho, T. H. D., & Wu, R. (1996). Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology, 110(1), 249–257.
Xu, G. Y., Rocha, P. S., Wang, M. L., Xu, M. L., Cui, Y. C., Li, L. Y., et al. (2011). A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta, 234(1), 47–59.
Yamakawa, H., Hirose, T., Kuroda, M., & Yamaguchi, T. (2007). Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiology, 144(1), 258–277.
Yang, A., Dai, X., & Zhang, W. H. (2012). A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 63(7), 2541–2556.
Yang, J., Zhang, J., Wang, Z., Zhu, Q., & Liu, L. (2002). Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta, 215(4), 645–652.
Yeo, A. R., Yeo, M. E., Flowers, S. A., & Flower, T. J. (1990). Screening of rice (Oryza sativa L.) genptypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theoretical and Applied Genetics, 79, 377–384.
Yu, J., Lai, Y., Wu, X., Wu, G., & Guo, C. (2016). Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochemical and Biophysical Research Communications, 478(2), 703–709.
Zeeman, S. C., Thorneycroft, D., Schupp, N., Chapple, A., Weck, M., Dunstan, H., et al. (2004). Plastidial α-glucanphosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiology, 135(2), 849–858.
Zhou, J., Wang, X., Jiao, Y., Qin, Y., Liu, X., He, K., et al. (2007). Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Molecular Biology, 63(5), 591–608.
Zhu, B., Su, J., Chang, M., Verma, D. P. S., Fan, Y. L., & Wu, R. (1998). Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Science, 139(1), 41–48.
Zhu, Y. N., Shi, D. Q., Ruan, M. B., Zhang, L. L., Meng, Z. H., Liu, J., et al. (2013). Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypiumhirsutum L.). PLoS ONE, 8(11), 80218.