Formulation and performance evaluation of alkali-activated self-compacting concrete

Vishal Nagaraj1, D. L. Venkatesh Babu1
1Civil Engineering Department, ACS College Of Engineering, Bengaluru, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akçaözoğlu, S., & Atiş, C. D. (2011). Effect of granulated blast furnace slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregate. Construction and Building Materials, 25(10), 4052–4058.

ASTM: C 1585-13. (2013). Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. West Conshohocken: ASTM International.

ASTM: C 1202-17(a). (2017). Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. West Conshohocken: ASTM International.

Bakharev, T. (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35, 1233–1246.

Bhattacharyya, S. K., & Singh, B. (2012). High performance materials and construction technologies for sustainable built space. Supra Institutional Project Report (SIP 29). Roorkee: CSIR-Central Building Research Institute.

Davidovits, J. (1991). Geopolymers: Inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry, 37, 1633–1656.

Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2016). Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cement & Concrete Composites, 72, 235–245.

DIN 1048. (1991). Testing concreter, testing of hardened concrete (specimens prepared in mould. Berlin: Beuth Verlag GmbH.

Duxson, P., Fernandez-Jimenez, A., Provis, J. L., Palomo, A., & van Deventer, J. S. J. (2007). Geopolymer technology, the current state of the art. Journal of Materials Science, 42, 2917–2933.

EFNARC. (2002). Guidelines for self-compacting concrete . London: EFNARC.

F.E.F.P. Group.(2005). The European guidelines for self compacting concrete specification, production and use (p. 63). European guidelines.

Fernandez-Jiminez, A. M., Palomo, A., & Lopez-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete. ACI Materials Journal, 103, 106–112.

Gunasekara, C., Law, D. W., & Setunge, S. (2016). Long term permeation properties of different fly ash geopolymer concretes. Construction and Building Materials, 124, 352–362.

Hardjito, D., & Fung, S. S. (2010). Fly ash-based geopolymer mortar incorporating bottom ash. Modern Applied Science, 4, 44–52.

Hardjito, D., Wallah, S. E., Sumajouw, M. D. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101(6), 467–472.

Heah, C. Y., Kamarudin, H., Al Bakri, A. M. M., Binhussain, M., Luqman, M., & Nizar, I. K. (2011). Effect of curing profile on Kaolin-based geopolymers. Physics Procedia, 22, 305–311.

IS 10262. (2009). Indian standard, concrete mix proportioning—guidelines. New Delhi: Bureau of Indian Standards.

IS 1199. (1959). Indian standard, method of sampling and analysis of concrete. New Delhi: Bureau of Indian Standards.

IS 383. (2016). Indian standard, specification for coarse and fine aggregates from natural sources for concrete . New Delhi: Bureau of Indian Standards.

IS 516. (1959). Indian standard, methods of tests for strength of concrete. New Delhi: Bureau of Indian Standards.

Ismail, I., Bernal, S. A., Provis, J. L., Hamdan, S., & van Deventer, J. S. J. (2013). Microstructural changes in alkali activated fly ash/slag geopolymers with sulphate exposure. Materials and Structures, 46, 361–373.

Kong, D. L. K., Sanjayan, J. G., & Crentsil, K. S. (2008). Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures. Journal of Materials and Structures., 43, 824–831.

Law, D. W., Adam, A. A., Molyneaux, T. K., Patnaikuni, I., & Wardhono, A. (2015). Long term durability properties of class F fly ash geopolymer concrete. Materials and Structures, 48, 721–731.

Lyon, R. E., Foden, A., Balaguru, P. N., Davidovits, M., & Davidovits, J. (1997). Fire-resistant aluminosilicate composites. Fire and Materials, 21, 67–73.

Neville, A. M. (1996). Properties of concrete (4th ed.). Harlow: Pearson Education Limited. (Final edition. Standards updated to 2002).

Nuruddin, M. F., Quazi, S., Shafiq, N., & Kusbiantoro, A. (2010). Compressive strength and microstructure of polymeric concrete incorporating fly ash and silica fume. Canadian Journal of Civil Engineering, 1(1), 15–18.

Olivia, M., & Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by taguchi method. Materials and Design, 36, 191–198.

Puertas, F., Martı́nez-Ramı́rez, S., Alonso, S., & Vazquez, T. (2000). Alkali-activated fly ash/slag cements: strength behaviour and hydration products. Cement and Concrete Research, 30(10), 1625–1632.

Rajamane, N. P., Natraja, M. C., Dattatreya, J. K., Lakshmanan, N., & Sabitha, D. (2012). Sulphate resistance and eco-friendliness of geopolymer concretes. The Indian Concrete Journal, 86, 13–21.

Rattanasak, U., & Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22, 1073.

Sathonsaowaphak, A., Chindaprasirt, P., & Pimraksa, K. (2009). Workability and strength of lignite bottom ash geopolymer mortar. Journal of Hazardous Materials, 168, 44–50.

Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production—present and future. Cement and Concrete Research, 41(7), 642–650.

Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90.

Swamy, R. N. (1998). Designing concrete and concrete structures for sustainable development. In: Proceedings of 6th international conference on fly ash, slag, silica fume and other natural pozzolans in concrete, American Concrete Institute, Farmington Hills, MI. 1, 245–255.

Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130.

Wallah, S. E., & Rangan, B.V., (2006). Low-calcium fly ash-based geopolymer concrete: long-term properties (pp. 76–80). Res. Report-GC2, Australia: Curtin University.

Yusuf, M. O., Megat Johari, M. A., Ahmad, Z. A., & Maslehuddin, M. (2014). Shrinkage an strength of alkaline activated ground steel slag/ultrafine palm oil fuel ash pastes and mortars. Materials and Design, 63, 710–718.

Zhang, Y. S. (2003). Research on structure formation mechanism and properties of high-performance geopolymer concrete. PhD Thesis, Nanjing: Southeast University.