Formulation and Evaluation of Fast Dissolving Films for Delivery of Triclosan to the Oral Cavity

Aditya Dinge1, Mangal S. Nagarsenker1
1Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

H. P. Nissen, and D. Ochs. Triclosan an antimicrobial active ingredient with anti-inflammatory activity. Cosm. Toilet. 113:61–64 (1998).

N. Surolia, and A. Surolia. Triclosan offers protection against blood stages of Malaria by inhibiting enoyl ACP reductase of Plasmodium falciparum. Nat. Med. 7:167–173 (2001).

J. Regos, and H. R. Hitz. Antimicrobial spectrum of triclosan: a broad spectrum antimicrobial agent. Zbl. Bakt. Hyg. A Orig. A. 226:390–401 (1974).

R. J. Jackson. Metal salts, essential oils and phenols- old or new. Periodontol. 15:63–73 (1997).

A. Scheie. Modes of action of currently known chemical anti plaque agents other than chlorhexidine. J. Dent. Res. 68:1609–1616 (1989).

D. J. Bradshaw, P. D. Marsh, G. K. Watson, and D. Cummins. Effects of triclosan and zinc citrate, alone and in combination, on a community of oral bacteria grown in vitro. J. Dent. Res. 72:25–30 (1993).

Y. J. Lin. Buccal absorption of triclosan following topical mouthrinse application. Am. J. Dent. 13:215–217 (2000).

S. B. Borsadia, D. O’Halloran, and J. L. Osborne. Quick-dissolving films—a novel approach to drug delivery. Drug Delivery Technology. 2(2) (2003). Available at http://www.drugdeliverytech.com/cgi-bin/articles.cgi?idArticle . Accessed July 3, 2003.

A. C. Liang, and L. Chen. Fast dissolving intraoral drug delivery systems. Expert Opin. Ther. Pat. 11:981–986 (2001).

T. Loftsson, N. Leeves, B. Bjonsdottir, L. Duffy, and M. Masson. Effect of cyclodextrins and polymers on triclosan availability and substantivity in toothpastes in vivo. J. Pharm. Sci. 88:1254–1258 (1999).

M. S. Nagarsenker, and G. Ramprakash. Influence of preparation methodology on solid-state properties of an acidic drug-cyclodextrin system. J. Pharm. Pharmacol. 56:725–733 (2004).

S. Hamada, and H. D. Slade. Immunology and Cariogenicity of Streptococcus mutans. Microbiol. Rev. 44:331–384 (1980).

A. G. Jagtap, and S. G. Karkera. Extract of Juglandaceae regia inhibits growth, in-vitro adherence, acid production and aggregation of Streptococcus mutans. J. Pharm. Pharmacol. 52:235–242 (2000).

J. E. Polli, G. S. Rekhi, L. L. Augsburger, and V. P. Shah. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. J. Pharm. Sci. 86:690–700 (1997).

K. K. Peh, and C. F. Wong. Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. J. Pharm. Pharmcol. Sci. 2:53–61 (1999).

D. M. Brahmankar, and S. B. Jaiswal. Biopharmaceutics and Pharmacokinetics: A Treatise. Vallabh Prakashan, New Delhi, India, 2003, pp. 178–203.

C. Grove, D. J. Liebenberg, W. Yang, and M. M. de Villiers. Improving the aqueous solubility of triclosan by solubilization, complex formation and in situ salt formation. J. Cosmet. Sci. 54:537–550 (2003).

R. G. Strickley. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 21:201–229 (2004).

T. Coenye, K. Honraet, P. Rigole, P. M. Jimenez, and H. J. Nelis. In vitro inhibition of streptococcus mutans biofilm formation on hydroxyapatite by subinhibitory concentrations of anthraquinones. Antimicro. Agents Chemother. 51:1541–1544 (2007).

J. M. Goodson. Pharmacokinetic principles controlling of oral therapy. J. Dent. Res. 68:1625–1632 (1989).