Forming-Free Nonfilamentary Resistive Switching in W/WO3 – x/HFO2/Pd Structures

Aleksandra A. Koroleva1, Maxim G. Kozodaev2, Yu. Yu. Lebedinskiǐ2, Andrey M. Markeev2
1Moscow Institute of Physics and Technology.
2Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. P. Alekhin, A. A. Chouprik, S. A. Gudkova, et al., J. Vac. Sci. Technol. B 29, 01A302 (2011). https://doi.org/10.1116/1.3533763

K. V. Egorov, Y. Y. Lebedinskii, A. M. Markeev, and O. M. Orlov, Appl. Surf. Sci. 356, 454 (2015). https://doi.org/10.1016/j.apsusc.2015.07.217

B. Butcher, S. Koveshnikov, D. C. Gilmer, et al., in Proceedings of the 2011 IEEE International Integrated Reliability Workshop, Final Report, 2011, p. 146. https://doi.org/10.1109/IIRW.2011.6142611

S. Koveshnikov, K. Matthews, K. Min, et al., in Proceedings of the 2012 International Electron Devices Meeting, 2012, p. 20.4.1. https://doi.org/10.1109/IEDM.2012.6479080

I. H. Inoue and A. Sawa, Functional Metal Oxides (Wiley-VCH, Weinheim, Germany, 2013), p. 443. https://doi.org/10.1002/9783527654864.ch16

A. A. Minnekhanov, A. V. Emelyanov, D. A. Lapkin, et al., Sci. Rep. 9 (1), 1 (2019). https://doi.org/10.1038/s41598-019-47263-9

A. V. Emelyanov, K. E. Nikiruy, V. A. Demin, et al., Microelectron. Eng. 215, 110988 (2019). https://doi.org/10.1016/j.mee.2019.110988

M. N. Martyshov, A. V. Emelyanov, V. A. Demin, et al., Phys. Rev. Appl. 14 (3), 1 (2020). https://doi.org/10.1103/PhysRevApplied.14.034016

V. A. Levanov, A. V. Emel’yanov, V. A. Demin, K. E. Nikirui, A. V. Sitnikov, S. N. Nikolaev, A. S. Vedeneev, Yu. E. Kalinin, and V. V. Ryl’kov, J. Commun. Technol. Electron. 63, 491 (2018). https://doi.org/10.1134/S1064226918050078

Y. Matveyev, R. Kirtaev, A. Fetisova, et al., Nanoscale Res. Lett. 11, 147 (2016). https://doi.org/10.1186/s11671-016-1360-6

Y. Matveyev, K. Egorov, A. Markeev, and A. Zenkevich, J. Appl. Phys. 117, 044901 (2015). https://doi.org/10.1063/1.4905792

V. N. Kruchinin, V. S. Aliev, T. V. Perevalov, et al., Microelectron. Eng. 147, 165 (2015). https://doi.org/10.1016/j.mee.2015.04.091

W. Choi, S.-G. Gi, D. Lee, et al., IEEE Trans. Nanotechnol. 19, 594 (2020). https://doi.org/10.1109/TNANO.2020.3010070

K. P. Biju, X. Liu, M. Siddik, et al., J. Appl. Phys. 110, 064505 (2011). https://doi.org/10.1063/1.3633227

T. Chang, S. H. Jo, and W. Lu, ACS Nano 5, 7669 (2011). https://doi.org/10.1021/nn202983n

D. S. Kuzmichev, Y. Y. Lebedinskii, C. S. Hwang, and A. M. Markeev, Phys. Status Solidi RRL 12, 1800429 (2018). https://doi.org/10.1002/pssr.201800429

A. A. Koroleva, A. G. Chernikova, A. A. Chouprik, et al., ACS Appl. Mater. Interfaces 12, 55331 (2020). https://doi.org/10.1021/acsami.0c14810

D. S. Kuzmichev, A. G. Chernikova, M. G. Kozodaev, and A. M. Markeev, Phys. Status Solidi 217, 1900952 (2020).https://doi.org/10.1002/pssa.201900952

T.-L. Tsai, Y.-H. Lin, and T.-Y. Tseng, IEEE Electron Dev. Lett. 36, 675 (2015). https://doi.org/10.1109/LED.2015.2428719

Q. Luo, X. Zhang, Y. Hu, et al., IEEE Electron Dev. Lett. 39, 664 (2018). https://doi.org/10.1109/LED.2018.2821162

D. C. Gilmer, S. Koveshnikov, B. Butcher, et al., in Proceedings of the 2012 Conference on VLSI Technology, System and Application, 2012, p. 1. https://doi.org/10.1109/VLSI-TSA.2012.6210102

K. Kawai, A. Kawahara, R. Yasuhara, et al., in Proceedings of the 2014 IEEE International Conference on IC Design and Technology, 2014, p. 1. https://doi.org/10.1109/ICICDT.2014.6838600

D. C. Gilmer, G. Bersuker, H.-Y. Park, et al., in Proceedings of the 2011 3rd IEEE International Memory Workshop IMW, 2011, p. 1. https://doi.org/10.1109/IMW.2011.5873225

K. E. Nikiruy, I. A. Surazhevsky, V. A. Demin, and A. V. Emelyanov, Phys. Status Solidi 217, 1900938 (2020). https://doi.org/10.1002/pssa.201900938

K. E. Nikiruy, A. V. Emelyanov, V. A. Demin, et al., AIP Adv. 9, 065116 (2019). https://doi.org/10.1063/1.5111083

Q. Luo, X. Xu, T. Gong, et al., in Proceedings of the 2017 IEEE International Electron Devices Meeting IEDM (2017), Vol. 2, p. 2.7.1. https://doi.org/10.1109/IEDM.2017.8268315

H. Ma, X. Zhang, F. Wu, et al., IEEE Trans. Electron Dev. 66, 924 (2019). https://doi.org/10.1109/TED.2018.2883192

Y. Kim, Y. J. Kwon, D. E. Kwon, et al., Adv. Mater. 2018, 1704320 (2018). https://doi.org/10.1002/adma.201704320

K. M. Kim, J. Zhang, C. Graves, et al., Nano Lett. 16, 6724 (2016). https://doi.org/10.1021/acs.nanolett.6b01781

Y.-F. Wang, Y.-C. Lin, I.-T. Wang, et al., Sci. Rep. 5, 10150 (2015). https://doi.org/10.1038/srep10150

C.-W. Hsu, Y.-F. Wang, C.-C. Wan, et al., Nanotechnology 25, 165202 (2014). https://doi.org/10.1088/0957-4484/25/16/165202

R. Sohal, C. Walczyk, P. Zaumseil, et al., Thin Solid Films 517, 4534 (2009). https://doi.org/10.1016/j.tsf.2008.12.036

R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005). https://doi.org/10.1063/1.1940727

D. Fukushi, A. Sasaki, H. Hirabayashi, and M. Kitano, Microelectron. Reliab. 79, 1 (2017). https://doi.org/10.1016/j.microrel.2017.09.025

W. Li, A. Sasaki, H. Oozu, et al., Microelectron. Reliab. 55, 402 (2015). https://doi.org/10.1016/j.microrel.2014.11.002

R. I. Romanov, M. G. Kozodaev, Y. Y. Lebedinskii, et al., J. Phys. Chem. C 124, 18156 (2020). https://doi.org/10.1021/acs.jpcc.0c05446

X. Zhu, Q. Wang, and W. D. Lu, Nat. Commun. 11, 2439 (2020). https://doi.org/10.1038/s41467-020-16261-1

C. Du, F. Cai, M. A. Zidan, et al., Nat. Commun. 8, 2204 (2017). https://doi.org/10.1038/s41467-017-02337-y

Z. Wang, S. Joshi, S. E. Savel’ev, et al., Nat. Mater. 16, 101 (2017). https://doi.org/10.1038/nmat4756