Formations and evolutions of martensitic tents and tunnels in shape memory alloy thin films
Tài liệu tham khảo
Ball, 1989, 647
Bhattacharya, 2003, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect
Bhattacharya, 1999, Tents and tunnels on martensitic films, Mater. Sci. Eng., A, 273, 685, 10.1016/S0921-5093(99)00397-4
Bhattacharya, 1999, A theory of thin films of martensitic materials with applications to microactuators, J. Mech. Phys. Solids, 47, 531, 10.1016/S0022-5096(98)00043-X
Bhattacharya, 2005, The material is the machine, Science, 307, 53, 10.1126/science.1100892
Chen, 1998, Applications of semi-implicit fourier-spectral method to phase field equations, Comput. Phys. Commun., 108, 147, 10.1016/S0010-4655(97)00115-X
Chen, 2018, Mechanical switching of ferroelectric domains beyond flexoelectricity, J. Mech. Phys. Solids, 111, 43, 10.1016/j.jmps.2017.10.011
Chen, 2015, Vortex switching in ferroelectric nanodots and its feasibility by a homogeneous electric field: effects of substrate, dislocations and local clamping force, Acta Mater., 88, 41, 10.1016/j.actamat.2015.01.041
Dondl, 1997, Computational analysis of martensitic thin films using subdivision surfaces, Int. J. Numer. Methods Eng., 72, 72, 10.1002/nme.2005
Han, 2017, Helium nanobubbles enhance superelasticity and retard shear localization in small-volume shape memory alloy, Nano Lett., 17, 3725, 10.1021/acs.nanolett.7b01015
Hane, 1998, Symmetry and microstructure in martensites, Philos. Mag. A, 78, 1215, 10.1080/01418619808239984
Hane, 1999, Microstructure in a copper-aluminium-nickel shape-memory alloy, Proc. R. Soc. A, 455, 3901, 10.1098/rspa.1999.0482
Hane, 2000, Microstructure in a cubic to orthorhombic transition, J. Elast., 59, 267, 10.1023/A:1011051204615
James, 2000, New materials from theory: trends in the development of active materials, Int. J. Solids Struct., 37, 239, 10.1016/S0020-7683(99)00091-8
Kan, 2013, Oliverpharr indentation method in determining elastic moduli of shape memory alloysa phase transformable material, J. Mech. Phys. Solids, 61, 2015, 10.1016/j.jmps.2013.05.007
Kan, 2016, Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy, Mech. Mater., 97, 48, 10.1016/j.mechmat.2016.02.011
Khachaturyan, 1983
Krulevitch, 1996, Thin film shape memory alloy microactuators, J. Microelectromech. Syst., 5, 270, 10.1109/84.546407
Lei, 2010, Austenitemartensite interface in shape memory alloys, Appl. Phys. Lett., 96, 141910, 10.1063/1.3385278
Li, 2008, Magnetoelastic modeling of magnetization rotation and variant rearrangement in ferromagnetic shape memory alloys, Mech. Mater., 40, 1022, 10.1016/j.mechmat.2008.06.003
Li, 2012, Unconventional phase field simulations of transforming materials with evolving microstructures, Acta Mech. Sin., 28, 915, 10.1007/s10409-012-0129-0
Li, 2011, Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys, Acta Mater., 59, 2648, 10.1016/j.actamat.2011.01.001
Li, 2010, Continuum theory and phase-field simulation of magnetoelectric effects in multiferroic bismuth ferrite, J. Mech. Phys. Solids, 58, 1613, 10.1016/j.jmps.2010.07.006
Li, 2008, Magnetoelastic domains and magnetic field-induced strains in ferromagnetic shape memory alloys by phase-field simulation, Appl. Phys. Lett., 92, 172504, 10.1063/1.2918127
Liu, 2014, The grain-size-dependent behaviors of nano-grained ferroelectric polycrystals: a phase-field study, Acta Mech., 225, 1335, 10.1007/s00707-013-1068-y
Liu, 2014, Precipitate morphologies of pseudobinary Sb2Te3-PbTe thermoelectric compounds, Acta Mater., 65, 308, 10.1016/j.actamat.2013.10.072
Liu, 2012, Controlling magnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite, Nanoscale, 4, 3175, 10.1039/c2nr00039c
Ma, 2007, A constrained theory on actuation strain in ferromagnetic shape memory alloys induced by domain switching, Acta Mater., 55, 3261, 10.1016/j.actamat.2007.01.025
Ranzieri, 2013, Epitaxial NiMnGa/MgO(1 0 0) thin films ranging in thickness from 10 to 100nm, Acta Mater., 61, 263, 10.1016/j.actamat.2012.09.056
Shu, 2000, Heterogeneous thin films of martensitic materials, Arch. Ration. Mech. Anal., 153, 39, 10.1007/s002050000088
Shu, 2002, Shape-memory micropumps, Materials Transactions, 43, 1037, 10.2320/matertrans.43.1037
Shu, 2008, Multivariant model of martensitic microstructure in thin films, Acta Mater., 56, 3969, 10.1016/j.actamat.2008.04.018
Shu, 2008, Constrained modeling of domain patterns in rhombohedral ferroelectrics, Appl. Phys. Lett., 92, 052909, 10.1063/1.2842385
Wang, 2013, Role of grain orientation distribution in the ferroelectric and ferroelastic domain switching of ferroelectric polycrystals, Acta Mater., 61, 6037, 10.1016/j.actamat.2013.06.044
Wang, 2013, A real-space phase field model for the domain evolution of ferromagnetic materials, Int. J. Solids Struct., 50, 3597, 10.1016/j.ijsolstr.2013.07.001
Wu, 2016, Real-space phase field investigation of evolving magnetic domains and twin structures in a ferromagnetic shape memory alloy, J. Appl. Phys., 120, 183904, 10.1063/1.4967531
Zainal, 2015, Micromachined shape-memory-alloy microactuators and their application in biomedical devices, Micromachines, 6, 879, 10.3390/mi6070879
Zhang, 2018, Thickness and grain-size dependence of ferroelectric properties in columnar-grained BaTiO3 thin films, J. Appl. Phys., 124, 144103, 10.1063/1.5041893
Zhou, 2016, An unconventional phase field modeling of domains formation and evolution in tetragonal ferroelectrics, Sci. China-Technol. Sci., 59, 1059, 10.1007/s11431-016-6080-8
Zhu, 2017, Taming martensitic transformation via concentration modulation at nanoscale, Acta Mater., 130, 196, 10.1016/j.actamat.2017.03.042
Zhu, 2017, Crystallographic analysis and phase field simulation of transformation plasticity in a multifunctional β-Ti alloy, Int. J. Plast., 89, 110, 10.1016/j.ijplas.2016.11.006