Formation of zinc oxide composites of doxycycline with high antibacterial activity based on DC-magnetron deposition of ZnO nanoscale particles on the drug surface
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. Muzammil, S. Hayat, M. Fakhar-e-Alam, B. Aslam, M.H. Siddique, M.A. Nisar, M. Saqalein et al., Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front Biosci 10, 352–374 (2018). https://doi.org/10.2741/e827. (PMID: 29293463)
V. van Giau, S.S.A. An, J. Hulme, Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug 13, 327–343 (2019). https://doi.org/10.2147/DDDT.S190577
K. Blecher, A. Nasir, A. Friedman, The growing role of nanotechnology in combating infectious disease. Virulence 2, 395–401 (2011). https://doi.org/10.4161/viru.2.5.17035
R.Y. Pelgrift, A.J. Friedman, Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 65(13–14), 1803–1815 (2013). https://doi.org/10.1016/j.addr.2013.07.011
W. Gao, Y. Chen, Y. Zhang, Q. Zhang, L. Zhang, Nanoparticle-based local antimicrobial drug delivery. Adv. Drug Deliv. Rev. 127, 46–57 (2018). https://doi.org/10.1016/j.addr.2017.09.015. (PMID: 28939377, PMCID: PMC5860926)
L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017). https://doi.org/10.2147/IJN.S121956
R. Jijie, A. Barras, F. Teodorescu, R. Boukherroub, S. Szunerits, Advancements on the molecular design of nanoantibiotics: current level of development and future challenges. Mol. Sys. Design and Engin. RSC. 2(4), 349–369 (2017). https://doi.org/10.1039/C7ME00048K
D. Sibi, C. Sethi Das, V.G. Jibin, C.D. Silvanose, Emerging antibiotic resistance in post-COVID-19 co-infections. J. Clin. Med. Case Rep. (2023). https://doi.org/10.13188/2332-4120.1000041
L. Pantel, T. Florin et al., Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol. Cell 70(1), 83–94 (2018). https://doi.org/10.1016/j.molcel.2018.03.001
B.M. Hover, S.-H. Kim, M. Katz et al., Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol. 3, 415–422 (2018). https://doi.org/10.1038/s41564-018-0110-1
S.A.H.A. Monaim, Y.E. Jad, A. El-Faham, B.G. de la Torre, F. Albericio, Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorg. Med. Chem. 10, 2788–2796 (2018). https://doi.org/10.1016/j.bmc.2017.09.040. (PMID: 29029900)
E.J. Ramchuran, A.M. Somboro, S.A. Abdel, D.G. Amoako, R. Parboosing, H.M. Kumalo et al., In vitro antibacterial activity of teixobactin derivatives on clinically relevant bacterial isolates. Front. Microbiol. (2018). https://doi.org/10.3389/fmicb.2018.01535. (PMID: 30050518; PMCID: PMC6051056)
A. Sharma, A.K. Goyaland, G. Rath, Recent advances in metal nanoparticles in cancer therapy. J. Drug Targ. 26, 617–632 (2018). https://doi.org/10.1080/1061186X.2017.1400553. (PMID: 29095640)
M.P. Vinardell, M. Mitjans, Antitumor activities of metal oxidenanoparticles. Nanomaterials 5, 1004–1021 (2015). https://doi.org/10.3390/nano5021004. (PMID: 28347048; PMCID: PMC5312892)
P. Swain, S.K. Nayak, A. Sasmal, T. Behera, S.K. Barik, S.K. Swain, S.S. Mishra, A.K. Sen, J.K. Das, P. Jayasankar, Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World. Microbiol. Biotechnol. 30, 2491–2502 (2014). https://doi.org/10.1007/s11274-014-1674-4. (PMID24888333)
A. Raghunath, E. Perumal, Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int. J. Antimicrob. Agents 49(2), 137–152 (2017). (PMID: 28089172)
A. Ananth, S. Dharaneedharan, M.-S. Heo, Y.S. Mok, Copper oxide nanomaterials: synthesis, characterization and structure-specific antibacterial performance. Chem. Eng. J. 262, 179–188 (2015). https://doi.org/10.1016/j.cej.2014.09.083
W. Salem, D.R. Leitner, F.G. Zingl, G. Schratter, R. Prassl, W. Goessler, J. Reidl, S. Schild, Antibacterial activity of silver and zinc nanoparticles against Vibrio cholera and entero toxic Escherichia coli. Int. J. Med. Microbiol. 305(1), 85–95 (2015). https://doi.org/10.1016/j.ijmm.2014.11.005. (PMID: 25466205; PMCID: PMC4300426)
J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology 16(10), 2346–2353 (2005). https://doi.org/10.1088/0957-4484/16/10/059. (PMID: 20818017)
T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7, 1–17 (2016). https://doi.org/10.3389/fmicb.2016.01831. (PMCID: PMC5110546; PMID: 27899918)
J.R. Morones-Ramirez, J.A. Winkler, C.S. Spina, J.J. Collins, Silver enhances antibiotic activity against Gram-negative bacteria. Sci. Transl. Med. 5(190), 1–21 (2013). https://doi.org/10.1126/scitranslmed.3006276. (PMID: 23785037; PMCID: PMC3771099)
T. Naseem, M.A. Farrukh, Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia ninermis and Gardenia jasminoides leaves extract. J. Chem. (2015). https://doi.org/10.1155/2015/912342
K. Ghosh, D. Chatterjee, A.G. Roy, A.R. Bandyopadhyay, Socio-economic status, iron deficiency anemia and COVID-19 disease burden – an appraisal. Eur. J. Clin. Exp. Med. 19(1), 52–58 (2021). https://doi.org/10.15584/ejcem.2021.1.8
J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, B. Chen, The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro. Nanoscale Res. Letts. 5, 1063–1071 (2010). https://doi.org/10.1007/s11671-010-9603-4. (PMID: 20671778; PMCID: PMC2893699)
A.Y. Yassin, A.M. Abdelghany, R.S. Salama, A.E. Tarabiah, Structural, optical and antibacterial activity studies on CMC/PVA blend filled with three different types of green synthesized ZnO nanoparticles. J. Inorg. Organomet. Polym. Mater. 33(7), 1855–1867 (2023). https://doi.org/10.1007/s10904-023-02622-y
H.S. Wasly, M.S. Abd El-Sadek, K.M. Batoo, Novel synthesis, structural, optical properties and antibacterial activity of ZnO nanoparticles. Mater. Res. Express 6(5), 055003 (2019). https://doi.org/10.1088/2053-1591/ab00ab
M.J. Klink, N. Laloo, A.L. Taka, V.E. Pakade, M.E. Monapathi, J.S. Modise, Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles against selected waterborne bacterial and yeast pathogens. Molecules, MDPI. 27(11), 3532 (2022). https://doi.org/10.3390/molecules. (PMID: 35684468; PMCID: PMC 9182006)
A.O. Fadwa, D.K. Alkoblan, A. Mateen, A.M. Albarad, Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginos a clinically isolated bacterial strains. Saudi J. Bio. Sci. (2021). https://doi.org/10.1016/j.sjbs.2020.09.064
A. Stanković, S. Dimitrijević, D. Uskoković, Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf. B Biointerfaces 102, 21–28 (2013). https://doi.org/10.1016/j.colsurfb.2012.07.033
M. Jaisai, S. Baruah, J. Dutta, Paper modified with ZnO nanorods– antimicrobial studies. Beilstein J. Nanotechnol. 3(1), 684–691 (2012). https://doi.org/10.3762/bjnano.3.78. (PMID: 23213632)
C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci. 13, 923–928 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.02.016
S.C. Motshekga, S.S. Ray, M.S. Onyango, M.N.B. Momba, Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J. Hazard. Mater. 262(15), 439–446 (2013). https://doi.org/10.1016/j.jhazmat.2013.08.074. (PMID: 24076479)
P. Bazant, I. Kuritka, L. Munster, M. Machovsky, Z. Kozakova, P. Saha, Hybrid nanostructured Ag/ZnO decorated powder cellulose fillers for medical plastics with enhanced surface antibacterial activity. J. Mater. Sci. Mater. Med. 25(11), 2501–2512 (2014). https://doi.org/10.1007/s10856-014-5274-5. (PMID: 25029999)
S. Vikal, Y.K. Gautam, A.K. Ambedkar, D. Gautam, J. Singh, D. Pratap, A. Kumar, S. Kumar, M. Gupta, B.P. Singh, Structural, optical and antimicrobial properties of pure and Ag doped ZnO nanostructures. J. Semicond. 43(3), 032802 (2022). https://doi.org/10.1088/1674-4926/43/3/032802
N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, R. Shenbhagaraman, R. Jayavel, Influence of Fe-doping on the structural, morphological, optical, magnetic and antibacterial effect of ZnO nanostructures. J. Nanosci. Nanotechnol. 16(2), 1567–1577 (2016). https://doi.org/10.1166/jnn.2016.10756. (PMID: 27433623)
S.M.H. Aljawad, S. Habeeb, A.A. Taha, H.A. Jassim, Synthesis and characterization of ZnO: Fe thin films for antimicrobial activity. Surf. Rev. Lett. 26(05), 1850197 (2019). https://doi.org/10.1142/S0218625X18501974
M. Xinru, S. Zhou, X. Xu, Q. Du, Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front. Surg. 9, 905892 (2022). https://doi.org/10.3389/fsurg.2022.905892. (PMCID: PMC9388913, PMID: 35990090)
B.B. Cvijan, J.K. Jačić, M. Bajčetić, The impact of copper ions on the activity of antibiotic drugs. Molecules 28(13), 5133 (2023). https://doi.org/10.3390/molecules28135133. (PMCID: PMC10343859, PMID: 37446795)
V. Hoseinpour, N. Ghaemi, Novel ZnO–MnO2–Cu2O triple nanocomposite: facial synthesis, characterization, antibacterial activity and visible light photocatalytic performance for dyes degradation—a comparative study. Mater. Res. Express. 5(8), 085012 (2018). https://doi.org/10.1088/2053-1591/aad2c6
R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activities. SC Adv. 5, 34645–34651 (2015). https://doi.org/10.1039/C5RA02557E
S. Zoha, M. Ahmad, S.J. Abbas Zaidi, A.M. Naeem, W. Ahmad, T.J. Park, M.A. Basit, ZnO-based mutable Ag2S/Ag2O multilayered architectures for organic dye degradation and inhibition of E. coli and B. subtilis. J. Photochem. Photobiol. A: Chem. 394, 112472–112482 (2020). https://doi.org/10.1016/j.jphotochem.2020.112472
Z. Ferdous, A. Nemmar, Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci. 21(7), 2375 (2020). https://doi.org/10.3390/ijms21072375. (PMID: 32235542, PMCID: PMC7177798)
J. Li, J. Zheng, Y. Yu, Z. Su, L. Zhang, X. Chen, Facile synthesis of rGO–MoS2–Ag nanocomposites with long-term antimicrobial activities. Nanotechnology 31(12), 125101 (2020). https://doi.org/10.1088/1361-6528/ab5ba7. (PMID: 31770730)
C. Liao, Y. Li, S.C. Tjong, Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 20(2), 449 (2019). https://doi.org/10.3390/ijms20020449. (PMID: 30669621)
C. Shuai, G. Liu, Y. Youwen, F. Qi, P. Shuping, Y. Wenjing, C. He, G. Wang, Q. Guowen, A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy 74, 104825 (2020)
Z.M. Mizwari, A.A. Oladipo, E. Yilmaz, Chitosan/metal oxide nanocomposites: synthesis, characterization, and antibacterial activity. Int. J. Polym. Mater. 70(6), 383–391 (2021). https://doi.org/10.1080/00914037.2020.1725753
S. Nastyshyn, J. Raczkowska, Y. Stetsyshyn, B. Orzechowska, A. Bernasik, Y. Shymborska, M. Brzychczy-Włoch, T. Gosiewski, O. Lishchynskyi, H. Ohar, D. Ochońska, K. Awsiuka, A. Budkowski, Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles. RSC Adv. 10(17), 10155–10166 (2020). https://doi.org/10.1039/c9ra10874b. (PMID: 35498562; PMCID: PMC9050227)
S. Wiesenmueller, P. Cierniak, M. Juebner, E. Koerner, D. Hegemann, K.M.C. Bender, Tailored antimicrobial activity and long-term cytocompatibility of plasma polymer silver nanocomposites. J. Biomater. Appl. 33(3), 327–339 (2018). https://doi.org/10.1177/0885328218793488. (PMID: 30223732)
M.H. Kudzin, Z. Mrozińska, A. Kaczmarek, A. Lisiak-Kucińska, Deposition of copper on poly (lactide) non-woven fabrics by magnetron sputtering-fabrication of new multi-functional, antimicrobial composite materials. Materials (Basel) 13(18), 3971 (2020). https://doi.org/10.3390/ma13183971. (PMID: 32911707; PMCID: PMC7558068)
N.B. Guerra, J. Bortoluz, A.R. Bystronski, A.E.D. Maddalozzo, D. Restelatto, M. Roesch-Ely, D.M. Devine, M. Giovanela, J.S. Crespo, Recent progress on natural rubber-based materials containing metallic and metal oxide nanoparticles: state of the art and biomedical applications. Compounds 3(2), 310–333 (2023)
J. Gallo, A. Panacek, R. Prucek, E. Kriegova, S. Hradilova, M. Hobza, M. Holinka, Silver nanocoating technology in the prevention of prosthetic joint infection. Materials (Basel) 9(5), 337 (2016). https://doi.org/10.3390/ma9050337. (PMID: 28773461; PMCID: PMC5503077)
S.M. Hosseini, R. Abbasalipourkabir, F.A. Jalilian, S.S. Asl, A. Farmany, G. Roshanaei, M.R. Arabestani, Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucellamelitensis enclosed in macrophage: a pharmacodynamics study on J774A1 cell line. Antimicrob. Resist. Infect. Control 8, 62 (2019). https://doi.org/10.1186/s13756-019-0504-8. (PMID: 30988946; PMCID: PMC6448226)
F. Yu, J. Ma, S. Han, Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents. Sci. Rep. 4, 5326 (2014). https://doi.org/10.1038/srep05326. (PMID: 24937315; PMCID: PMC4060509)
W. Li, J. Wang, G. He, L. Yu, N. Noor, N. Sun, X. Zhou, J. Hu, I.P. Parkin, Enhanced adsorption capacity of ultra-long hydrogen titanatenanobelts for antibiotics. J. Mater. Chem. A5(9), 4352–4358 (2017). https://doi.org/10.1039/C6TA09116D
A. Foubert, N.V. Beloglazova, A. Rajkovic et al., Bioconjugation of quantum dots: review and impact on future application. Trends Anal. Chem. 83, 31–48 (2016). https://doi.org/10.1016/j.trac.2016.07.008
E. Arakelova, A. Khachatryan, K. Avjyan, Z. Farmazyan, A. Mirzoyan, L. Savchenko, S. Ghazaryan, F. Arsenyan, Zinc oxide nanocomposites with antitumor activity. Nat. Sci. 2(12), 1341–1348 (2010). https://doi.org/10.4236/ns.2010.212163
E.R. Arakelova, A.M. Khachatryan, K.E. Avjyan, N.S. Aramyan, V.A. Gevorkyan, S.G. Grigoryan, G.N. Mirzoyan, Deposition of high-ohmic oriented ZnO on glass, Si, and PEDOT-PSS, PEDOT-PSS (PVA) substrates. J. Cont. Phys. 46, 293–299 (2011). https://doi.org/10.3103/S1068337211060089
E.R. Arakelova, A.M. Khachatryan, K.E. Avjyan, A.A. Kteyan, Optimization of magnetron deposition process for formation of high-quality oriented ZnO films. J. Cont. Phys. 47, 181–188 (2012). https://doi.org/10.3103/S1068337212040068
E.R. Arakelova, A.M. Khachatryan, K.A. Avjyan, S.L. Grigoryan, A. Kteyan, ZnO films deposition by DC-magnetron sputtering: effect of target configuration on the film properties. Thin Solid Films 612, 407–413 (2016). https://doi.org/10.1016/j.tsf.2016.06.030
E.R. Arakelova, S.G. Grigoryan, A.M. Khachatryan, K.E. Avjyan, L.M. Savchenko, F.G. Arsenyan, New drug delivery system for cancer therapy. Int. J. Med. Sci. Eng. 7(12), 1075–1080 (2013)
E.R. Arakelova, S.G. Grigoryan, F.G. Arsenyan, N.S. Babayan, R.M. Grigoryan, N.K. Sarkisyan, In vitro and in vivo anticancer activity of nanosize zinc oxide composites of doxorubicin. Int. J. Med. Pharm. Sci. Eng. 8(1), 38–43 (2014)
E.R. Arakelova, S.G. Grigoryan, A.M. Khachatryan, A.A. Mirzoian, Z.M. Farmazyan, S.L. Grigoryan, M.A. Yeranosyan, F.G. Arsenyan, R.E. Muradyan, H.V. Gasparyan, Zinc oxide composites of doxorubicin in the form of coating, composite films and gels with a high antitumor activity and low toxicity. Nat. Sci. 11(3), 61–73 (2019). https://doi.org/10.4236/ns.2019.113008
R. Dhar, J. Kirkpatrick, L. Gilbert, A. Khanna, M. Madhavdas Modi, R.K. Chawla, S. Dalal, V. Nagarjuna Maturu, M. Stern, O.T. Keppler, R. Djukanovic, S.D. Gadola, Doxycycline for the prevention of progression of COVID-19 to severe disease requiring intensive care unit (ICU) admission: a randomized, controlled, open-label, parallel group trial (DOXPREVENT.ICU). PLoS ONE 18(1), e0280745 (2023). https://doi.org/10.1371/journal.pone.0280745
N. Stambouli, A. Driss, F. Gargouri, K. Bahrini et al., COVID-19 prophylaxis with doxycycline and zinc in health care workers: a prospective, randomized, double-blind clinical trial. Int. J. Infect. Dis. 122, 553–558 (2022). https://doi.org/10.1016/j.ijid.2022.06.016
Guidelines for the preclinical study of the antimicrobial activity of drugs. In Guidelines for preclinical studies of drugs. Editor Mironov, A.N. Moscow, 2012, pp. 509-526 [manual]
Buryakina Anna and Merkulova Natalie. Nonclinical studies in the Russian Federation - Problems, regulatory norms, and harmonization with international standards. Medical Writing 26(4), 33-37, December 2017, www.emwa.org
P.-W. Chi, C.-W. Su, D.-H. Wei, Internal stress induced natural self-chemisorption of ZnO nanostructured films. Sci. Rep. 7, 43281 (2017). https://doi.org/10.1038/srep43281
F.W. Heinemann, C.F. Leypold, C.R. Roman, M.O. Schmitt, S. Schneider, X-ray crystallography of tetracycline, doxycycline and sancycline. J. Chem. Crystallogr. 43, 213–222 (2013). https://doi.org/10.1007/s10870-013-0407-0
M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, E. Marsili, Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids 117, 233–239 (2014). https://doi.org/10.1016/j.colsurfb.2014.02.017
E. Arakelova, V. Parvanyan, F. Grigoryan, G. Asatryan, G. Petrosyan, Increase in concentration of a Zn-containing volatile complex by UV irradiation of a target for ZnO films synthesis. EPD Congress 2006. TMS (The Minerals, Metals & Materials Society), 2006, pp. 813–818. https://www.researchgate.net/publication/272886557. URL http://www.scopus.com/inward/record.url?eid=2-s2.0-33749264227&partnerID=MN8TOARS
E. Arakelova, V. Parvanyan, F. Grigoryan, G. Asatryan, G. Petrosyan, Study of decomposition regularities for a Zn-containing volatile complex used in ZnO film synthesis EPD congress, TMS (The Minerals, Metals & Materials Society), pp. 883–888. https://www.researchgate.net/publication/272886482. URL http://www.scopus.com/inward/record.url?eid=2-s2.0-33749234353&partnerID=MN8TOARS
V.G. Parvanyan, F.A. Grigoryan, E.R. Arakelova, G.G. Asatryan, G.N. Mirzoyan, G.G. Petrosyan, Formation and decomposition of a volatile Zn-containing complex for the synthesis of ZnO films. Kinet. Catal. (2007). https://doi.org/10.1134/S0023158407050060
K. Mandava, K. Kadimcharla, N.R. Keesara, S.N. Fatima, P. Bommena, U.R. Batchu, Green synthesis of stable copper nanoparticles and synergistic activity with antibiotics. Indian J. Pharm. Sci. 79, 695–700 (2017). https://doi.org/10.4172/pharmaceutical-sciences.1000281
N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9, 35–37 (2008). https://doi.org/10.1088/1468-6996/9/3/035004. (PMID: 27878001; PMCID: PMC5099658)
L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanoparticle Res. 9, 479–489 (2007). https://doi.org/10.1007/s11051-006-9150-1
J. Gupta, M. Irfan, N. Ramgir, K.P. Muthe, A.K. Debnath, S. Ansari, J. Gandhi, C.T. Ranjith-Kumar, M. Surjit, Antiviral activity of zinc oxide nanoparticles and tetrapods against the hepatitis E and hepatitis C viruses. Front. Microbiol. (2022). https://doi.org/10.3389/fmicb.2022.881595
H.S. Elshafie, A. Osman, M.M. El-Saber, I. Camele, E. Abbas, Antifungal activity of green and chemically synthesized ZnO nanoparticles against Alternaria citri, the causal agent citrus black rot. Plant Pathol. J. 39(3), 265–274 (2023). https://doi.org/10.5423/PPJ.OA.02.2023.0035. (PMCID: PMC10265117; PMID: 37291767)
G. Bisht, S. Rayamajhi, ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine (Rij) 3, 9 (2016). https://doi.org/10.5772/63437. (PMCID: PMC5998263; PMID: 29942384)
H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram. Int. 43(1), 907–914 (2017). https://doi.org/10.1016/j.ceramint.2016.10.051
V.P. Thavish, D. Perera, D.M. Ranga et al., Albumin grafted coaxial electrosprayed polycaprolactone-zinc oxide nanoparticle for sustained release and antibacterial drug delivery. RSC Adv. 12, 1718–1727 (2022). https://doi.org/10.1039/D1RA07847J
Y. Xi, W. Pan, D. Xi, X. Liu, J. Yu, M. Xue, N. Xu, J. Wen, W. Wang, H. He, Y. Liu, Y. He, C. Guo, Optimization, characterization, and evaluation of ZnO/polyvinylidene fluoride nanocomposites for orthopedic applications: improved antibacterial ability and promoted osteoblast growth. Drug Deliv. 27(1), 1378–1385 (2020). https://doi.org/10.1080/10717544.2020.1827084
T. Ramesh, B. Sravanthi, G. Umadevi, K. Ramaiah, B. Anna-Tanuja-Safala, T. Suneetha, A comparative study of antibacterial, anticancer and gas-sensing properties of zinc oxide nanostructures synthesized by different routes. J. Mater. Sci. Mater. Electron. 34, 19 (2023). https://doi.org/10.1007/s10854-022-09442-9
Q. Ding, Y.E. Miao, T. Liu, Morphology and photocatalytic property of hierarchical polyimide/ZnO fibers prepared via a direct ion-exchange process. ACS Appl. Mater. Interfaces 5, 5617–5622 (2013). https://doi.org/10.1021/am4009488. (PMID: 23721281)
C. Luo, C.Y. Hou, Q.H. Zhang, Y.G. Li, H.Z. Wang, A noise-reduced broad-spectrum photo detector based on reagent-free electrophoretic assembled flexible ZnO/rGO films. Appl. Surf. Sci. 469, 113–117 (2019). https://doi.org/10.1016/j.apsusc.2018.11.012Y.G
Y.J. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, X.H. Tse, H.H. Hng, Comprehensive study of ZnO films prepared by filtered cathodic 18 vacuum arc at room temperature. J. Appl. Phys. 94, 1597–1604 (2003). https://doi.org/10.1063/1.1592007
N. Huang, J. Shu, Z. Wang, M. Chen, C. Ren, W. Zhang, One-step pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation. J. Alloys Compd. 648, 919–929 (2015). https://doi.org/10.1016/j.jallcom.2015.07.039
M. Baek, M.K. Kim, H.J. Cho, J.A. Lee, J. Yu, H.E. Chung, S.J. Choi, Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge. J. Phys. Conf. Ser. 304, 106–113 (2011). https://doi.org/10.1088/1742-6596/304/1/012044
A. Ananth, S. Dharaneedharan, H.-J. Seo, M.-S. Heo, J.-H. Boo, Soft jet plasma-assisted synthesis of Zinc oxide nanomaterials: morphology controls and antibacterial activity of ZnO. Chem. Eng. J. 322(15), 742–752 (2017). https://doi.org/10.1016/j.cej.2017.03.100
J. Liu, Y. Wang, J. Ma, Y. Peng, A. Wang, A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. J. Alloys Compd. 783, 898–918 (2019). https://doi.org/10.1016/j.jallcom.2018.12.330
B. Sevinç, L. Hanley, Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. Part. B Appl. Biomater. 94, 22–31 (2010). https://doi.org/10.1002/jbm.b.31620. (PMID: 20225252; PMCID: PMC2881188)
C. Mendes, G. Dilarri, C. Forsan, V. Sapata, P. Lopes, M. de Matos, B. Peterson, R. Montagnolli, H. Ferreira, E. Bidoia, Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci. Rep. 12, 2658 (2022). https://doi.org/10.1038/s41598-022-06657-y. (PMID: 35173244 PMCID: PMC8850488)
M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanotechnol. 7, 184–192 (2011). https://doi.org/10.1016/j.nano.2010.10.001. (PMID: 21034861)
R. Wahab, Y.S. Kim, A. Mishra, S.I. Yun, H.S. Shin, Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Nanoscale Res. Lett. 5, 1675–1681 (2010). https://doi.org/10.1007/s11671-010-9694-y
Y. Abo-zeid, G.R. Williams, The potential anti-infective applications of metaloxide nanoparticles: a systematic review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12(3), 1–36 (2019). https://doi.org/10.1002/wnan.1592