Formation of supported bacterial lipid membrane mimics

Biointerphases - Tập 3 Số 2 - Trang FA41-FA50 - 2008
Christoph Merz1, Wolfgang Knoll2, Marcus Textor1, Erik Reimhult2,1
1Swiss Federal Institute of Technology Zurich (ETH Zürich) 1 , Wolfgang-Pauli-Strasse 10, Zurich, CH-8093, Switzerland
2Institute of Materials Research and Engineering 2 , 3, Research Link, Singapore, 117602, Singapore

Tóm tắt

In recent years, a large effort has been spent on advancing the understanding of how surface-supported membranes are formed through vesicle fusion. The aim is to find simple model systems for investigating biophysical and biochemical interactions between constituents of cell membranes and, for example, drugs and toxins altering membrane function. Designing and controlling the self-assembly of model membranes onto sensor substrates thus constitutes an important field of research, enabling applications in, e.g., drug screening, dynamic biointerfaces, artificial noses, and research on membrane-active antibiotics. The authors have developed and investigated the formation of strongly negatively charged supported lipid membranes which systematically mimic bacterial membrane composition on three important biosensor materials: SiO2, TiO2, and indium tin oxide. By tuning the electrostatic interaction through balancing the lipid vesicle charge with the ionic strength of Ca2+ as a fusion promoter, the authors have optimized the self-assembly and obtained new insights into the details of lipid vesicle-surface interaction. The results will be useful for future development and application of specialized lipid membrane surface coatings prepared from complex lipid compositions. The adsorption processes were characterized by a quartz crystal microbalance with dissipation monitoring, optical waveguide lightmode spectroscopy, and fluorescence recovery after photobleaching, which allowed the determination of formation also of nonplanar supported lipid membranes.

Từ khóa


Tài liệu tham khảo

2006, Surf. Sci. Rep., 61, 429, 10.1016/j.surfrep.2006.06.001

2003, Langmuir, 19, 5435, 10.1021/la0342060

2006, Langmuir, 22, 3313, 10.1021/la0519554

2002, Biomaterials, 23, 3699, 10.1016/S0142-9612(02)00103-5

2003, Biosens. Bioelectron., 18, 415, 10.1016/S0956-5663(02)00154-9

1998, Biophys. J., 75, 1397, 10.1016/S0006-3495(98)74057-3

2006, Langmuir, 22, 3497, 10.1021/la052687c

1986, Biochim. Biophys. Acta, 864, 95, 10.1016/0304-4157(86)90016-X

2004, Langmuir, 20, 11600, 10.1021/la049302v

2004, Langmuir, 20, 11092, 10.1021/la048450i

2002, Biophys. J., 83, 3371, 10.1016/S0006-3495(02)75337-X

2005, Biophys. J., 88, 3422, 10.1529/biophysj.104.053728

2005, Langmuir, 21, 299, 10.1021/la0478402

2003, Biophys. J., 85, 3035, 10.1016/S0006-3495(03)74722-5

2003, Langmuir, 19, 1632, 10.1021/la026427w

2000, Langmuir, 16, 1473, 10.1021/la990806g

2000, Langmuir, 16, 1806, 10.1021/la9903043

2005, J. Phys. Chem. B, 109, 21755, 10.1021/jp053482f

2006, Thin Solid Films, 495, 246, 10.1016/j.tsf.2005.08.184

2004, Nano Lett., 4, 5, 10.1021/nl034590l

2004, Colloids Surf., 39, 77, 10.1016/j.colsurfb.2004.09.003

2002, Phys. Rev. E, 66, 051905, 10.1103/PhysRevE.66.051905

2002, J. Chem. Phys., 117, 7401, 10.1063/1.1515320

2003, Langmuir, 19, 1681, 10.1021/la0263920

2006, Langmuir, 22, 3467, 10.1021/la053000r

2005, Langmuir, 21, 6443, 10.1021/la0509100

2005, Langmuir, 21, 1481, 10.1021/la047732f

1995, Biophys. J., 69, 1447, 10.1016/S0006-3495(95)80014-7

1992, Biochim. Biophys. Acta, 1103, 307, 10.1016/0005-2736(92)90101-Q

2006, J. Membr. Biol., 212, 29, 10.1007/s00232-006-0040-3

2005, Biophys. J., 89, 1812, 10.1529/biophysj.105.064030

2004, Eur. Biophys. J., 33, 555, 10.1007/s00249-004-0399-y

2004, Biochemistry, 43, 6393, 10.1021/bi049944h

2000, Biophys. J., 79, 1400, 10.1016/S0006-3495(00)76392-2

1997, Chem. Phys. Lipids, 89, 141, 10.1016/S0009-3084(97)00071-6

1993, J. Phys. Chem., 97, 2974, 10.1021/j100114a025

2000, Biophys. J., 78, 1400, 10.1016/S0006-3495(00)76693-8

2003, Biophys. J., 84, 1796, 10.1016/S0006-3495(03)74987-X

2004, Biophys. J., 86, 3759, 10.1529/biophysj.103.037507

2006, J. Am. Chem. Soc., 128, 1711, 10.1021/ja056972u

2003, Nat. Rev. Immunol., 3, 710, 10.1038/nri1180

2005, Biopolymers, 80, 717, 10.1002/bip.20286

1996, Rev. Sci. Instrum., 67, 3238, 10.1063/1.1147494

1959, Z. Phys., 155, 206, 10.1007/BF01337937

1978, Biopolymers, 17, 1759, 10.1002/bip.1978.360170711

1998, Biochim. Biophys. Acta, 1369, 61, 10.1016/S0005-2736(97)00209-5

2003, Anal. Chem., 75, 5080, 10.1021/ac034269n

2001, Biophys. J., 80, 1557, 10.1016/S0006-3495(01)76128-0

1988, Biophys. J., 53, 963, 10.1016/S0006-3495(88)83177-1

1976, Biophys. J., 16, 1055, 10.1016/S0006-3495(76)85755-4

2004, Anal. Chem., 76, 7211, 10.1021/ac0492970

2000, Phys. Rev. Lett., 84, 5443, 10.1103/PhysRevLett.84.5443

1997, Science, 275, 651, 10.1126/science.275.5300.651

2002, J. Colloid Interface Sci., 246, 40, 10.1006/jcis.2001.8060

2007, J. Phys. Chem. B, 111, 6289, 10.1021/jp070624s

2007, Biophys. J., 92, 3587, 10.1529/biophysj.106.101139

1998, Langmuir, 14, 5636, 10.1021/la971228b

2005, Langmuir, 21, 1377, 10.1021/la047654w

1999, Biophys. J., 76, 2600, 10.1016/S0006-3495(99)77412-6

1999, Colloid Polym. Sci., 277, 550, 10.1007/s003960050423

2002, Anal. Chem., 74, 253, 10.1021/ac015584h

1999, J. Electrochem. Soc., 146, 2849, 10.1149/1.1392019

1995, J. Phys. Chem., 99, 4639, 10.1021/j100013a039

2001, Biochemistry, 40, 4340, 10.1021/bi002030k

2005, J. Chem. Phys., 122, 204711, 10.1063/1.1908500

1997, Adv. Phys., 46, 13, 10.1080/00018739700101488

1990, Phys. Rev. A, 42, 4768, 10.1103/PhysRevA.42.4768

2000, J. Chem. Phys., 112, 900, 10.1063/1.480617

1990, Biophys. J., 58, 357, 10.1016/S0006-3495(90)82382-1

2001, J. Electroanal. Chem., 496, 158, 10.1016/S0022-0728(00)00369-7

2002, J. Phys. Chem. B, 106, 477, 10.1021/jp011693o

1999, Langmuir, 15, 8451, 10.1021/la990341u

1998, Langmuir, 14, 3118, 10.1021/la9710381

2002, J. Phys. Chem. B, 106, 4245, 10.1021/jp014337e

1999, Mol. Membr. Biol., 16, 279, 10.1080/096876899294508