Formation of quaternary Zn(AlxGa1x)2O4 epilayers driven by thermally induced interdiffusion between spinel ZnGa2O4 epilayer and Al2O3 substrate

Materials Today Advances - Tập 20 - Trang 100422 - 2023
Samiran Bairagi1, Jui-Che Chang1, Fu-Gow Tarntair2, Wan-Yu Wu3, Gueorgui K. Gueorguiev1, Edward Ferraz de Almeida4, Roger Magnusson1, Kun-Lin Lin5, Shao-Hui Hsu5, Jia-Min Shieh5, Jens Birch1, Ray-Hua Horng2, Kenneth Järrendahl1, Ching-Lien Hsiao1
1Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
2Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
3Department of Materials Science and Engineering, National United University, Miaoli, 36063, Taiwan
4Federal University of the West of Bahia, Center for Exact Sciences and Technologies, Rua Bertioga, 892, Morada Nobre I, CEP: 47810-059, Barreiras, BA, Brazil
5Taiwan Semiconductor Research Institute (TSRI), National Applied Research Laboratories, Hsinchu, 30091, Taiwan

Tài liệu tham khảo

Horng, 2017, Epitaxial growth of ZnGa2O4: a new, deep ultraviolet semiconductor candidate, Cryst. Growth Des., 17, 6071, 10.1021/acs.cgd.7b01159 Tsai, 2018, Deep-ultraviolet photodetectors based on epitaxial ZnGa2O4 thin films, Sci. Rep., 1 Liao, 2021, Wide range tunable bandgap and composition β -phase (AlGa)2O3thin film by thermal annealing, Appl. Phys. Lett., 118, 10.1063/5.0027067 Higashiwaki, 2016, Recent progress in Ga2O3 power devices, Semicond. Sci. Technol., 31, 10.1088/0268-1242/31/3/034001 Xie, 2019, Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors, Adv. Funct. Mater., 29 Dang, 2018, Bandgap engineering of α-(AlxGa1-x)2O3 by a mist chemical vapor deposition two-chamber system and verification of Vegard's Law, Appl. Phys. Lett., 113, 2, 10.1063/1.5037678 Hassa, 2019, Influence of oxygen pressure on growth of Si-doped β-(Al x Ga 1 − x) 2 O 3 thin films on c-sapphire substrates by pulsed laser deposition, ECS J. Solid State Sci. Technol., 8, Q3217, 10.1149/2.0411907jss Hu, 2021, Optical and electronic properties of (AlxGa1−x)2O3/Al2O3 (x>0.4) films grown by magnetron sputtering, J. Alloys Compd., 864, 1, 10.1016/j.jallcom.2021.158765 Ahmadi, 2017, Demonstration of β-(AlxGa1-x)2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy, APEX, 10 Oshima, 2016, Composition determination of β-(AlxGa1-x)2O3 layers coherently grown on (010) β-Ga2O3 substrates by high-resolution X-ray diffraction, APEX, 9 Anhar Uddin Bhuiyan, 2019, MOCVD epitaxy of β-(AlxGa1−x)2O3 thin films on (010) Ga2O3 substrates and N-type doping, Appl. Phys. Lett., 115, 10.1063/1.5123495 Bhuiyan, 2020, Phase transformation in MOCVD growth of (AlxGa1−x)2O3 thin films, Apl. Mater., 8 Fleischer, 1990, Stability of semiconducting gallium oxide thin films, Thin Solid Films, 190, 93, 10.1016/0040-6090(90)90132-W Battiston, 1996, Chemical vapour deposition and characterization of gallium oxide thin films, Thin Solid Films, 279, 115, 10.1016/0040-6090(95)08161-5 Kokubun, 2007, Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors, Appl. Phys. Lett., 90, 10.1063/1.2432946 Goyal, 2014, Effect of annealing on β-Ga2O3 film grown by pulsed laser deposition technique, J. Alloys Compd., 583, 214, 10.1016/j.jallcom.2013.08.115 Li, 2020, Impact of thermal-induced sapphire substrate erosion on material and photodetector characteristics of sputtered Ga2O3 films, J. Alloys Compd., 823, 10.1016/j.jallcom.2020.153755 Singh, 2022, Sapphire substrate induced effects on β-Ga2O3 thin films, J. Mater. Sci. Mater. Electron., 33, 12629, 10.1007/s10854-022-08212-x Hilfiker, 2022, Elevated temperature spectroscopic ellipsometry analysis of the dielectric function, exciton, band-to-band transition, and high-frequency dielectric constant properties for single-crystal ZnGa2O4, Appl. Phys. Lett., 120, 10.1063/5.0087623 Wang, 2018, Growth and characterization of co-sputtered aluminum-gallium oxide thin films on sapphire substrates, J. Alloys Compd., 765, 894, 10.1016/j.jallcom.2018.06.270 Giannozzi, 2009, Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/39/395502 Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892, 10.1103/PhysRevB.41.7892 Chen, 2020, Zinc gallium oxide—a review from synthesis to applications, Nanomaterials, 10, 1, 10.3390/nano10112208 Luo, 2020, Heteroepitaxial (111) ZnGa2O4 thin films grown on (00.1) sapphire by pulsed laser deposition, Phys. Status Solidi Rapid Res. Lett., 14, 10.1002/pssr.202000270 Bragg, 1913, C. Professor of Physics, the reflection of X-rays by crystals, Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character, 88, 428 Galazka, 2019, Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa 2 O 4 single crystals, Apl. Mater., 7, 10.1063/1.5053867 Horng, 2022, Growth mechanism and characteristics of β-Ga2O3 heteroepitaxailly grown on sapphire by metalorganic chemical vapor deposition, Mater. Today Adv., 16 Shen, 2017, Characterizations of metal-oxide-semiconductor field-effect transistors of ZnGaO grown on sapphire substrate, IEEE J. Electron Devices Soc., 5, 112, 10.1109/JEDS.2017.2653419 Luo, 2021, Heteroepitaxial hexagonal (00.1) CuFeO2 thin film grown on cubic (001) SrTiO3 substrate through translational and rotational domain matching, Phys. Status Solidi Rapid Res. Lett., 15, 10.1002/pssr.202100002 Nakagomi, 2012, Crystal orientation of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate, J. Cryst. Growth, 349, 12, 10.1016/j.jcrysgro.2012.04.006 Tompkins, 2005, Handbook of ellipsometry, Handb. Ellipsom, 1 Khoshman, 2014, Multiple oscillator models for the optical constants of polycrystalline zinc oxide thin films over a wide wavelength range, Appl. Surf. Sci., 307, 558, 10.1016/j.apsusc.2014.04.073 Bairagi, 2022, Zinc gallate (ZnGa 2 O 4) epitaxial thin films: determination of optical properties and bandgap estimation using spectroscopic ellipsometry, Opt. Mater. Express, 12, 3284, 10.1364/OME.462668 Herzinger, 1995 Johs, 1998, Development of a parametric optical constant model for Hg1−xCdxTe for control of composition by spectroscopic ellipsometry during MBE growth, Thin Solid Films, 313–314, 137, 10.1016/S0040-6090(97)00800-6 Aspnes, 1982, Optical properties of thin films, Thin Solid Films, 89, 249, 10.1016/0040-6090(82)90590-9 Bruggeman, 1935, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys., 416, 636, 10.1002/andp.19354160705 Levenberg1, 1944, A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164, 10.1090/qam/10666 Marquardt, 2006, 431 Hilfiker, 2021, Zinc gallate spinel dielectric function, band-to-band transitions, and Γ-point effective mass parameters, Appl. Phys. Lett., 118 Hilfiker, 2019, Dielectric function tensor (1.5 eV to 9.0 eV), anisotropy, and band to band transitions of monoclinic β-(AlxGa1–x)2O3 (x ≤ 0.21) films, Appl. Phys. Lett., 114, 10.1063/1.5097780 Hilfiker, 2021, Anisotropic dielectric functions, band-to-band transitions, and critical points in α-Ga2O3, Appl. Phys. Lett., 118 Swinnich, 2018, Prediction of optical band gap of β-(AlxGa1-x)2O3 using material informatics, Mater. Discov., 11, 1, 10.1016/j.md.2018.06.001