Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways

Progress in Energy and Combustion Science - Tập 26 Số 4-6 - Trang 565-608 - 2000
Hanz Richter1, Jack B. Howard1
1Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Masssachusetts Avenue, Cambridge, MA 02139-4307, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dockery, 1993, New Engl J Med, 329, 1753, 10.1056/NEJM199312093292401

Siegmann, 1998, Molecular precursor of soot and quantification of the associated health risk, 143

Miller, 1979, Size considerations for establishing a standard for inhalable particles, J Air Pollut Control Assoc, 29, 610, 10.1080/00022470.1979.10470831

Allen, 1996, Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts, Environ Sci Technol, 30, 1023, 10.1021/es950517o

Kaden, 1979, Mutagenicity of soot and associated polycyclic aromatic hydrocarbons to Salmonella typhimurium, Cancer Res, 39, 4152

Wood, 1980, Mutagenicity and tumor-initiating activity of cyclopenta[c,d]pyrene and structurally related compounds, Cancer Res, 40, 642

Fu, 1980, Cyclopenta-polycyclic aromatic hydrocarbons: potential carcinogens and mutagens, Carcinogenesis, 1, 725, 10.1093/carcin/1.8.725

Busby, 1988, Dose–response relationships of the tumorigenicity of cyclopenta[c,d]pyrene, benzo[a]pyrene and 6 nitrochrysene in a newborn mouse lung adenoma bioassay, Carcinogenesis, 9, 741, 10.1093/carcin/9.5.741

Lafleur, 1990, Chemical characterization and bacterial mutagenicity testing of ethylene combustion products from a jet-stirred/plug-flow reactor, Energy & Fuels, 4, 307, 10.1021/ef00021a016

Durant, 1996, Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols, Mutation Res, 371, 123, 10.1016/S0165-1218(96)90103-2

Denissenko, 1996, Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53, Science, 274, 430, 10.1126/science.274.5286.430

1981

1981

1990

1994

Clarke, 1946, The tendency to smoke of organic substances on burning, Part I, J Inst Petrol, 32, 627

Schug, 1980, Sooting behaviour of gaseous hydrocarbon diffusion flames and the influence of additives, Combust Sci Technol, 22, 235, 10.1080/00102208008952387

Haynes, 1981, Soot formation, Prog Energy Combust Sci, 7, 229, 10.1016/0360-1285(81)90001-0

Street, 1955, Carbon formation in pre-mixed flames, Fuel, 34, 4

Palmer, 1965, The formation of carbon from gases, 265

Homann, 1967, Carbon formation in premixed flames, Combust Flame, 11, 265, 10.1016/0010-2180(67)90017-X

Homann, 1968, Chemistry of carbon formation in flames, Proc Roy Soc A, 307, 141, 10.1098/rspa.1968.0180

Wagner HGg. Soot formation in combustion. Seventeenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1979. p. 3–19.

Glassman I. Soot formation in combustion processes, Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1988. p. 295–311.

Smith, 1981, Fundamentals of soot formation in flames with application to diesel engine particulate emissions, Prog Energy Combust Sci, 7, 275, 10.1016/0360-1285(81)90002-2

Warnatz, 1978, Calculation of the structure of laminar flat flames I: flame velocity of freely propagating ozone decomposition flames, Ber Bunsenges Phys Chem, 82, 193, 10.1002/bbpc.197800010

Warnatz, 1979, The structure of freely propagating and burner-stabilized flames in the H2–CO–O2 system, Ber Bunsenges Phys Chem, 83, 950, 10.1002/bbpc.19790830915

Warnatz J. The structure of laminar alkane-, alkene-, and acetylene flames, Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1981. p. 369–84.

Kee RJ, Rupley FM, Miller JA. CHEMKIN-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia Report SAND89-8009, Sandia National Laboratory, Livermore, CA, 1989.

Kee RJ, Grcar JF, Smooke MD, Miller JA. a Fortran program for modeling steady laminar one-dimensional premixed flames. Sandia Report SAND85-8240, 1985.

Glarborg P, Kee RJ, Grcar JF, Miller JA. PSR: a Fortran program for modeling well-stirred reactors. Sandia Report SAND86-8209, 1986.

Lutz AE, Kee RJ, Miller JA. SENKIN: a Fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. Sandia Report SAND87-8248, 1988.

Mitchell RE, Kee RJ. A general-purpose computer code for predicting chemical behavior behind incident and reflected shocks. Sandia Report SAND82-8205, 1982.

Westbrook CK, Dryer FL. Chemical kinetics and modeling of combustion processes. Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1981. p. 749–67.

Delfau J-L, Akrich R, Bouhria M, Reuillon M, Sanogo O, Vovelle C. Experimental and computational investigation of the structure of a sooting decane–O2–Ar flame. Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1990. p. 1567–72.

Lindstedt P. Modeling of the chemical complexities of flames. Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 269–85.

Gerhardt, 1987, Polyhedral carbon ions in hydrocarbon flames, Chem Phys Lett, 137, 306, 10.1016/0009-2614(87)80889-8

Howard, 1991, Fullerenes C60 and C70 in flames, Nature, 352, 139, 10.1038/352139a0

Howard, 1994, Carbon shells in flames, Nature, 370, 603, 10.1038/370603a0

Arnott, 1833

Berthelot, 1869, Sur la Formation des Carbures Pyrogénés, Ann Chim Phys 4ème Série, 16, 143

Lewes, 1894, The action of heat upon ethylene, Proc Roy Soc, 55, 90, 10.1098/rspl.1894.0017

Gaydon, 1948

Rummel, 1941, Die Strahlung leuchtender Flammen. Erster Teil: Schrifttumsgrundlagen, Arbeitshypothesen und Vorversuche, Arch Eisenhüttenw, 14, 489, 10.1002/srin.194101863

Bradley, 1961, Shock wave studies by mass spectrometry. II. Polymerization and oxidation of acetylene, J Chem Phys, 35, 264, 10.1063/1.1731898

Homann, 1965, Untersuchung des Reaktionsablaufs in fetten Kohlenwasserstoff–Sauerstoff-Flammen II. Versuche an rußenden Acetylen–Sauerstoff-Flammen bei niedrigem Druck, Ber Bunsenges Phys Chem, 69, 20, 10.1002/bbpc.19650690106

Bonne U, Homann KH, Wagner HGg. Carbon formation in premixed flames. Tenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1965. p. 503–12.

Bonne, 1965, Untersuchung des Reaktionsablaufs in fetten Kohlenwasserstoff–Sauerstoff-Flammen III. Optische Untersuchungen an rußenden Flammen, Ber Bunsenges Phys Chem, 69, 35, 10.1002/bbpc.19650690107

Homann KH, Wagner HGg. Some new aspects of the mechanism of carbon formation in premixed flames. Eleventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1967. p. 371–9.

Crittenden, 1973, Formation of polycyclic aromatics in rich premixed acetylene and ethylene flames, Combust Flame, 20, 359, 10.1016/0010-2180(73)90028-X

Stehling FC, Frazee JD, Anderson RC. Mechanisms of nucleation in carbon formation. Eighth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1962. p. 774–84.

Berthelot, 1901

Fenimore CP, Jones GW, Moore GE. Carbon formation in quenched flat flames at 1600K. Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1957. p. 242–7.

Berthelot, 1866, Théorie des corps pyrogénés, Ann Chim Phys 4ème Série, 9, 469

Bone, 1908, The thermal decomposition of hydrocarbons. Part I. [Methane, ethane, ehtylene, and acetylene], J Chem Soc, 93, 1197, 10.1039/CT9089301197

Davidson, 1918, The formation of aromatic hydrocarbons from natural gas condensate, Ind Engng Chem, 10, 901, 10.1021/ie50107a013

Hague, 1929, The mechanism of thermal decomposition of normal paraffins, J Chem Soc (London), 378

Hurd, 1929, The pyrolysis of hydrocarbons: isobutylene, J Am Chem Soc, 51, 3561, 10.1021/ja01387a008

Bockhorn, 1983, Investigation of the formation of high molecular hydrocarbons and soot in premixed hydrocarbon–oxygen flames, Ber Bunsenges Phys Chem, 87, 1067, 10.1002/bbpc.19830871121

Cole, 1984, Formation mechanisms of aromatic compounds in aliphatic flames, Combust Flame, 56, 51, 10.1016/0010-2180(84)90005-1

Ebert, 1983, Modeling studies of the homogeneous formation of aromatic compounds in the thermal composition of n-hexane, Ber Bunsenges Phys Chem, 87, 1036, 10.1002/bbpc.19830871115

Weissman, 1984, Pyrolysis of methyl chloride: a pathway in the chlorine-catalyzed polymerization of methane, Int J Chem Kinet, 16, 307, 10.1002/kin.550160403

Frenklach, 1987, Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame, Combust Sci Technol, 51, 265, 10.1080/00102208708960325

Frenklach, 1986, Mechanism of soot formation in acetylene–oxygen mixtures, Combust Sci Technol, 50, 79, 10.1080/00102208608923927

Colket MB. The pyrolysis of acetylene and vinylacetylene in a single-pulse shock tube. Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1986. p. 851–64.

Frenklach, M., Clary, D.W., Gardiner, W.C., Stein, S.E., Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1984. p. 887–901.

Harris, 1988, Formation of small aromatic molecules in a sooting ethylene flame, Combust Flame, 72, 91, 10.1016/0010-2180(88)90099-5

Warnatz J. Chemistry of high temperature combustion of alkanes up to octane. Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1984. p. 845–56.

Bittner JD, Howard JB. Composition profiles and reaction mechanisms in a near-sooting premixed benzene/oxygen/argon flame. Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1981. p. 1105–16.

Kiefer, 1983, The very high temperature pyrolysis of ethylene and the subsequent reactions of product acetylene, Combust Flame, 51, 79, 10.1016/0010-2180(83)90085-8

Rao, 1984, Formation of D and H atoms in the pyrolysis of benzene-d6 and chlorobenzene behind shock waves, J Phys Chem, 88, 5990, 10.1021/j150668a049

Westmoreland, 1989, Forming benzene in flames by chemically activated isomerization, J Phys Chem, 93, 8171, 10.1021/j100362a008

Westmoreland PR, Howard JB, Longwell JP. Tests of published mechanisms by comparison with measured laminar flame structure in fuel-rich acetylene combustion. Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1986. p. 773–82.

Dean, 1985, Predictions of pressure and temperature effects upon radical addition and recombination reactions, J Phys Chem, 89, 4600, 10.1021/j100267a038

Bastin E, Delfau J-L, Reuillon M, Vovelle C, Warnatz J. Experimental and computational investigation of the structure of a sooting C2H2–O2–Ar flame. Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1988. p. 313–22.

Westmoreland PR. Comment to Bastin et al. (Ref. [75]). Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1988. p. 321.

Miller, 1992, Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels, Combust Flame, 91, 21, 10.1016/0010-2180(92)90124-8

Miller JA, Volponi JV, Durant JL, Goldsmith JEM, Fisk GA, Kee RJ. The structure and reaction mechanism of rich, non-sooting C2H2/O2/Ar flames. Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1990. p. 187–94.

Kee RJ, Rupley FM, Miller JA. The CHEMKIN thermodynamic data base. Sandia Technical Report SAND87-8215, Sandia National Laboratories, Livermore, CA, April 1987.

Hurd, 1962, Pyrolytic formation of arenes. I. Survey of general principles and findings, J Am Chem Soc, 84, 4509, 10.1021/ja00882a028

Wu, 1987, Shock tube study of allene pyrolysis, J Phys Chem, 91, 6291, 10.1021/j100308a042

Hidaka, 1989, Thermal decomposition of propyne and allene in shock waves, Int J Chem Kinet, 21, 643, 10.1002/kin.550210805

Kern, 1988, Thermal decomposition of 1,2-butadiene, Int J Chem Kinet, 20, 731, 10.1002/kin.550200907

Henry, 1972, Independent mechanisms in the thermal rearrangement of mono- and bicyclic 3,4-bismethylenecyclobutene derivatives, J Am Chem Soc, 94, 5103, 10.1021/ja00769a064

Farmer, 1955, Free radicals by mass spectrometry VII. The ionization potentials of ethyl, isopropyl, and propargyl radicals and the appearance potentials of the radical ions in some derivatives, Can J Chem, 33, 861, 10.1139/v55-104

Alkemade, 1989, Formation of C6H6 isomers by recombination of propynyl in the system sodium vapour/propynylhalide, Z Phys Chem (Neue Folge), 161, 19, 10.1524/zpch.1989.161.Part_1_2.019

Melius CF, Miller JA, Evleth EM. Unimolecular reaction mechanisms involving C3H4, C4H4, and C6H6 hydrocarbon species. Twenty-fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1992. p. 621–8.

Diau, 1994, A theoretical study of the CH3+C2H2 reaction, J Chem Phys, 101, 3923, 10.1063/1.467510

Pauwels, 1995, The oxidation of allene in a low-pressure H2/O2/Ar–C3H4 flame, Combust Sci Technol, 110/111, 249, 10.1080/00102209508951926

Miller, 1996, The effect of allene addition on the structure of a rich C2H2/O2/Ar flame, Combust Flame, 105, 451, 10.1016/0010-2180(95)00227-8

Stein SE, Walker JA, Suryan MM, Fahr A. A new pathway to benzene in flames. Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1990. p. 85–90.

Marinov, 1996, Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames, Combust Sci Technol, 116/117, 211, 10.1080/00102209608935550

Wang, 1997, A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames, Combust Flame, 110, 173, 10.1016/S0010-2180(97)00068-0

Dagaut, 1998, A comparative study of the kinetics of benzene formation from unsaturated C2 to C4 hydrocarbons, Combust Flame, 113, 620, 10.1016/S0010-2180(97)00244-7

Lindstedt RP, Skevis G. Benzene formation chemistry in premixed 1,3-butadiene flames. Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996. p. 703–9.

Dente, 1979, Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO), Computer Chem. Engng, 3, 61, 10.1016/0098-1354(79)80013-7

Faravelli T, Goldaniga A, Ranzi E. The kinetic modeling of soot precursors in ethylene flames. Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 1489–95.

Melius CF, Colvin ME, Marinov NM, Pitz WJ, Senkan SM. Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety. Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996. p. 685–92.

Moskaleva LV, Mebel AM, Lin MC. The CH3+C5H5 reaction: a potential source of benzene at high temperatures. Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996. p. 521–6.

Miller JA. Theory and modeling in combustion chemistry. Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996. p. 461–80.

Atkinson, 1999, Rate coefficients for the propargyl radical self-reaction and oxygen addition reaction measured using ultraviolet cavity ring-down spectroscopy, J Phys Chem A, 103, 4242, 10.1021/jp990468s

Morter, 1994, Rate constant measurement of the recombination reaction C3H3+C3H3, J Phys Chem, 98, 7029, 10.1021/j100079a023

Dean, 1990, Detailed kinetic modeling of autocatalysis in methane pyrolysis, J Phys Chem, 94, 1432, 10.1021/j100367a043

Castaldi MJ, Marinov NM, Melius CF, Huang J, Senkan SM, Pitz WJ, Westbrook CK. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame. Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996. p. 693–702.

Marinov, 1998, Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame, Combust Flame, 114, 192, 10.1016/S0010-2180(97)00275-7

Richter, 1999, Formation mechanism of polycyclic aromatic hydrocarbons and fullerenes in premixed benzene flames, Combust Flame, 119, 1, 10.1016/S0010-2180(99)00032-2

Olivella, 1995, Ab initio calculations of the potential surface for the thermal decomposition of the phenoxyl radical, J Phys Chem, 99, 10549, 10.1021/j100026a018

Liu, 1996, Ab initio study of the mechanism for the thermal decomposition of the phenoxy radical, J Phys Chem, 100, 9314, 10.1021/jp953566w

Frank P, Herzler J, Just Th, Wahl C. High-temperature reactions of phenyl oxidation. Twenty-fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1994. p. 833–40.

Buth R, Hoyermann K, Seeba J. Reactions of phenoxy radicals in the gas phase. Twenty-fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1994. p. 841–9.

Horn C, Roy K, Frank P, Just Th. Shock-tube study on the high-temperature pyrolysis of phenol. Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 321–8.

Alzueta, 1998, Parabenzoquinone pyrolysis and oxidation in a flow reactor, Int J Chem Kinet, 30, 683, 10.1002/(SICI)1097-4601(1998)30:9<683::AID-KIN9>3.0.CO;2-O

Roy K, Horn C, Frank P, Slutsky VG, Just Th. High-temperature investigations on the pyrolysis of cyclopentadiene, Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 329–36.

Homann KH. Formation of large molecules, particulates and ions in premixed hydrocarbon flames: progress and unresolved questions. Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1984. p. 857–70.

Howard JB. Carbon addition and oxidation reactions in heterogeneous combustion and soot formation. Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1990. p. 1107–27.

Jensen DE. Prediction of soot formation rates: a new approach. Proc Roy Soc London A 1974;338:375–396.

Benish TG, Lafleur AL, Taghizadeh K, Howard JB. C2H2 and PAH as soot growth reactants in premixed C2H4–air flames. Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996. p. 2319–26.

Kazakov, 1998, On the relative contribution of acetylene and aromatics to soot particle surface growth, Combust Flame, 112, 270, 10.1016/S0010-2180(97)81776-2

Levy, 1955, Reactivities of aromatic hydrocarbons toward methyl radicals, J Am Chem Soc, 77, 1949, 10.1021/ja01612a076

Prado GP, Lee ML, Hites RA, Hoult DP, Howard JB. Soot and hydrocarbon formation in a turbulent diffusion flame. Sixteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1977. p. 649–61.

Lafleur, 1996, Characterization of flame-generated C10 to C160 polycyclic aromatic hydrocarbons by atmospheric-pressure chemical ionization mass spectrometry with liquid introduction via heated nebulizer interface, J Am Soc Mass Spectrom, 7, 276, 10.1016/1044-0305(95)00651-6

Lafleur, 1998, Identification of some novel cyclopenta-fused polycyclic aromatic hydrocarbons in ethylene flames, Polycyc Arom Compound, 12, 223, 10.1080/10406639808233840

Wornat MJ, Vernaglia BA, Lafleur AL, Plummer EF, Taghizadeh K, Nelson PF, Li C-Z, Necula A, Scott LT. Cyclopenta-fused polycyclic aromatic hydrocarbons from brown coal pyrolysis. Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 1677–86.

Frenklach M, Ramachandra MK, Matula RA. Soot formation in shock-tube oxidation of hydrocarbons. Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1984. p. 871–8.

Frenklach M, Clary DW, Gardiner WC, Stein SE. Effect of fuel structure on pathways to soot. Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1986. p. 1067–76.

Frenklach M, Wang H. Detailed modeling of soot particle nucleation and growth. Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1990. p. 1559–66.

Kazakov, 1995, Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10bar, Combust Flame, 100, 111, 10.1016/0010-2180(94)00086-8

Bönig M, Feldermann C, Jander H, Lüers B, Rudolph G, Wagner HGg. Soot formation in premixed C2H4 flat flames at elevated pressure. Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1990. p. 1581–7.

Krestinin AV. Polyyne model of soot formation. Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 1557–63.

Miller JH, Smyth KC, Mallard WG. Calculations of the dimerization of aromatic hydrocarbons: implications for soot formation. Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1984. p. 1139–47.

Brown NJ, Revzan KL, Frenklach M. Detailed kinetic modeling of soot formation in ethylene/air mixtures reacting in a perfectly stirred reactor. Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 1573–80.

Pope, 1997, Simultaneous particle and molecule modeling (SPAMM): an approach for combining sectional aerosol equations and elementary gas-phase reactions, Aerosol Sci Technol, 27, 73, 10.1080/02786829708965459

Kiefer, 1985, A shock tube study of major pathways in the high-temperature pyrolysis of benzene, J Phys Chem, 89, 2013, 10.1021/j100256a043

Nicovich, 1984, Reaction of hydrogen atom with benzene: kinetics and mechanism, J Phys Chem, 88, 2534, 10.1021/j150656a021

Mebel, 1997, Theoretical study of potential energy surface and thermal rate constants for the C6H5H2 and C6H6+H reactions, J Phys Chem A, 101, 3189, 10.1021/jp9702356

Sauer, 1970, Rate constants and transient spectra in the gas-phase reactions of hydrogen atoms. Substituents effects in monosubstituted benzenes, J Phys Chem, 74, 59, 10.1021/j100696a009

Cioslowski, 1996, Energetics and site specificity of the homolytic C–H bond cleavage in benzenoid hydrocarbons: an ab initio electronic structure study, J Am Chem Soc, 118, 5261, 10.1021/ja9600439

Leidreiter, 1989, An investigation of the reaction between O(3P) and benzene at high temperatures, Z Phys Chem (Neue Folge), 165, 1, 10.1524/zpch.1989.165.Part_1.001

Ko, 1991, Kinetics of the O(3P)+C6H6 reaction over a wide temperature range, J Phys Chem, 95, 8745, 10.1021/j100175a060

Madronich, 1985, Kinetics and mechanism of the reaction of OH with C6H6 over 790–1410K, J Phys Chem, 89, 3556, 10.1021/j100262a026

Fahr A, Stein SE. Reactions of vinyl and phenyl radicals with ethyne, ethene and benzene. Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1988. p. 1023–9.

Heckmann E, Hippler H, Troe J. High-temperature reactions and thermodynamic properties of phenyl radicals. Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996. p. 543–50.

Yu, 1994, Absolute rate constant for the reaction of phenyl radical with acetylene, Int J Chem Kinet, 26, 1095, 10.1002/kin.550261105

Wang, 1994, Calculations of rate coefficients for the chemically activated reactions of acetylene with vinylic and aromatic radicals, J Phys Chem, 98, 11465, 10.1021/j100095a033

D'Anna A, Violi A. A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames. Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 425–33.

Braun-Unkhoff M, Chrysostomou A, Frank P, Gutheil E, Lückerath R, Stricker W. Experimental and numerical study on soot formation in laminar high-pressure flames. Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 1565–72.

Böhm H, Jander H, Tanke D. PAH growth and soot formation in the pyrolysis of acetylene and benzene at high temperatures and pressures: modeling and experiment. Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 1605–12.

Park, 1999, Experimental and theoretical studies of the C6H5+C6H6 reaction, J Phys Chem A, 103, 9036, 10.1021/jp9920592

Park, 1997, Kinetics of the recombination of phenyl radicals, J Phys Chem A, 101, 14, 10.1021/jp961569i

Badger, 1964, The formation of aromatic hydrocarbons at high temperatures XX. The pyrolysis of [1-14C]naphthalene, Aust J Chem, 17, 771, 10.1071/CH9640771

Sarofim, 1994, The role of biaryl reactions in PAH and soot formation, 485

Masonjones, 1995, Biarene formation during pyrolysis of a mixture of anthracene and naphthalene, Combust Sci Technol, 109, 273, 10.1080/00102209508951905

Badger, 1964, The formation of aromatic hydrocarbons at high temperatures XXII. The pyrolysis of phenanthrene, Aust J Chem, 17, 1138, 10.1071/CH9641138

Badger, 1964, The formation of aromatic hydrocarbons at high temperatures XXIII. The pyrolysis of anthracene, Aust J Chem, 17, 1147, 10.1071/CH9641147

Stein, 1987, Pyrocondensation of anthracene, J Org Chem, 52, 1582, 10.1021/jo00384a037

Mukherjee, 1994, Polycyclic aromatic hydrocarbons from the high-temperature pyrolysis of pyrene, Combust Flame, 96, 191, 10.1016/0010-2180(94)90008-6

Griesheimer J, Homann K-H. Large molecules, radicals ions, and small soot particles in fuel-rich hydrocarbon flames Part II. Aromatic radicals and intermediate PAHs in a premixed low-pressure naphthalene/oxygen/argon flame. Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 1753–9.

Siegmann, 1995, Reactive dimerization: a new pah growth mechanism in flames, Combust Sci Technol, 109, 165, 10.1080/00102209508951900

Hepp, 1995, New aspects of growth mechanisms for polycyclic aromatic hydrocarbons in diffusion flames, Chem Phys Lett, 233, 16, 10.1016/0009-2614(94)01433-V

Cioslowski, 1998, Thermally induced cyclodehydrogenation of biaryls: a simple radical reaction or a sequence of rearrangements?, J Org Chem, 63, 4051, 10.1021/jo980132z

Orlow, 1927, Über die pyrogenetische Dissoziation von Phenanthren in Gegenwart von Wasserstoff unter Druck, Ber Deutsch Chem Ges, 60, 1950, 10.1002/cber.19270600846

Brouwer, 1988, Thermal isomerization of azulene to naphthalene in shock waves, Int J Chem Kinet, 20, 379, 10.1002/kin.550200504

Scott, 1987, Benzene ring contractions at high temperatures. Evidence from the thermal interconversions of aceanthrylene, acephenanthrylene, and fluoranthene, J Am Chem Soc, 109, 5461, 10.1021/ja00252a025

Visser, 1998, Identification of isomeric polycyclic aromatic hydrocarbons (PAH) in pyrolysates from ethynylated PAH by gas chromatography–Fourier infrared spectroscopy. Their relevance for the understanding of PAH rearrangement and interconversion processes during combustion, Fuel, 77, 913, 10.1016/S0016-2361(97)00291-3

Colket MB, Seery DJ. Reaction mechanisms for toluene pyrolysis. Twenty-fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1994. p. 883–91.

Howard, 1995, Effects of PAH isomerizations on mutagenicity of combustion products, Combust Flame, 101, 262, 10.1016/0010-2180(94)00210-J

Gerhardt, 1987, Polyhedral carbon ions in hydrocarbon flames, Chem Phys Lett, 137, 306, 10.1016/0009-2614(87)80889-8

Gerhardt P, Löffler S, Homann KH. The formation of polyhedral carbon ions in fuel-rich acetylene and benzene flames. Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1988. p. 395–401.

Howard, 1991, Fullerenes C60 and C70 in flames, Nature, 352, 139, 10.1038/352139a0

Howard, 1992, Production of C60 and C70 fullerenes in benzene–oxygen flames, J Phys Chem, 96, 6657, 10.1021/j100195a026

Howard JB. Fullerenes formation in flames. Twenty-fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1992. p. 933–46.

Howard, 1992, Fullerenes synthesis in combustion, Carbon, 30, 1183, 10.1016/0008-6223(92)90061-Z

Richter, 1995, Fabrication of fullerenes in benzene/oxygen/argon and benzene/acetylene/oxygen/argon flames, J Chim Phys, 92, 1272, 10.1051/jcp/1995921272

Richter, 1997, Generation of higher fullerenes in flames, J Phys Chem B, 101, 1556, 10.1021/jp962928c

Zhang, 1990, Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot, J Phys Chem, 90, 525, 10.1021/j100276a001

Kroto, 1985, C60: Buckminsterfullerene, Nature, 318, 162, 10.1038/318162a0

Howard, 1994, Carbon shells in flames, Nature, 370, 603, 10.1038/370603a0

Chowdhury, 1996, Fullerenic nanostructures in flames, J Mater Res, 11, 341, 10.1557/JMR.1996.0040

Grieco, 2000, Fullerenic carbon in combustion-generated soot, Carbon, 38, 597, 10.1016/S0008-6223(99)00149-9

Grieco WJ, Lafleur AL, Swallow KC, Richter H, Taghizadeh K, Howard JB. Fullerences and PAH in low-pressure premixed benzene/oxygen flames, Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998. p. 1669–75.

Ugarte, 1994, High-temperature behaviour of fullerene black, Carbon, 32, 1245, 10.1016/0008-6223(94)90108-2

Frenklach, 1988, Comment on the proposed role of spheroidal carbon clusters in soot formation, J Phys Chem, 92, 561, 10.1021/j100313a061

Lafleur, 1993, Proposed fullerene precursor corannulene identified in flames both in the presence and absence of fullerene production, J Phys Chem, 97, 13539, 10.1021/j100153a020

Lafleur, 1996, Identification of C20H10 dicyclopentapyrenes in flames: correlation with corannulene and fullerene formation, J Phys Chem, 100, 17421, 10.1021/jp9605313

Pope, 1993, Chemistry of fullerenes C60 and C70 formation in flames, J Phys Chem, 97, 11001, 10.1021/j100144a018

Pope CJ, Howard JB. Further testing of the fullerene formation mechanism with predictions of temperature and pressure trends. Twenty-fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1994. p. 671–8.

Pope, 1996, Thermodynamic limitations for fullerene formation in flames, Tetrahedron, 52, 5161, 10.1016/0040-4020(96)00122-6

McKinnon JT, Howard JB. The roles of PAH and acetylene in soot nucleation and growth. Twenty-fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1992. p. 965–71.

Baum, 1992, Fullerene ions and their relation to PAH and soot in low-pressure hydrocarbon flames, Ber Bunsenges Phys Chem, 96, 841, 10.1002/bbpc.19920960702

Bachmann, 1994, The formation of C60 and its precursors in naphthalene flames, Chem Phys Lett, 223, 506, 10.1016/0009-2614(94)00490-0

Ahrens, 1994, Fullerenes and their ions in hydrocarbon flames, Int J Mass Spectrom Ion Process, 138, 133, 10.1016/0168-1176(94)04036-2

Bachmann M, Wiese W, Homann K-H. PAH and aromers: precursors of fullerenes and soot. Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996. p. 2259–67.

Bachmann, 1995, Fullerenes versus soot in benzene flames, Combust Flame, 101, 548, 10.1016/0010-2180(94)00276-X

Ahrens, 1994, On-line multi-photon ionization mass spectrometry applied to PAH and fullerenes in flames, Ber Bunsenges Phys Chem, 98, 265, 10.1002/bbpc.19940980224

Stone, 1986, Theoretical studies of icosahedral C60 and some related species, Chem Phys Lett, 128, 501, 10.1016/0009-2614(86)80661-3

Scott, 1996, Fragments of fullerenes: novel syntheses, structures, and reactions, Pure Appl Chem, 68, 291, 10.1351/pac199668020291

Calcote, 1981, Mechanisms of soot nucleation in flames—a critical review, Combust Flame, 42, 215, 10.1016/0010-2180(81)90159-0

Calcote, 1994, Comparison of the ionic mechanism of soot formation with a free radical mechanism, 471

Kern, 1990, Identification of chemi-ions formed by reactions of deuterated fuels in the reflected shock tube, J Phys Chem, 94, 3333, 10.1021/j100371a025

McKinnon, 1995, Infrared analysis of flame-generated PAH samples, Combust Flame, 105, 161, 10.1016/0010-2180(95)00185-9

Benson, 1958, Additivity rules for the estimation of molecular properties. Thermodynamic properties, J Chem Phys, 29, 546, 10.1063/1.1744539

Benson, 1969, Additivity rules for the estimation of thermochemical properties, Chem Rev, 69, 279, 10.1021/cr60259a002

Benson, 1976

Stein, 1977, Predictive scheme for thermodynamic properties of polycyclic aromatic hydrocarbons, J Phys Chem, 81, 314, 10.1021/j100519a007

Ritter, 1991, THERM: thermodynamic property estimation for gas phase radicals and molecules, Int J Chem Kinet, 23, 767, 10.1002/kin.550230903

Stein, 1981, Chemical thermodynamics of polyaromatic compounds containing heteroatoms and five-membered rings, Thermochim Acta, 44, 265, 10.1016/0040-6031(81)85020-4

Moiseeva, 1990, Group additivity scheme for calculating the chemical thermodynamic properties of gaseous polycyclic aromatic hydrocarbons containing five-membered rings, Thermochim Acta, 168, 179, 10.1016/0040-6031(90)80636-D

Allinger, 1989, Molecular mechanics. The MM3 force field for hydrocarbons. 1, J Am Chem Soc, 111, 8551, 10.1021/ja00205a001

Lii, 1989, Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics, J Am Chem Soc, 111, 8566, 10.1021/ja00205a002

Dewar, 1985, AM1: a new general purpose quantum mechanical molecular model, J Am Chem Soc, 107, 3902, 10.1021/ja00299a024

Stewart, 1989, Optimization of parameters for semiempirical methods I. Method, J Comput Chem, 10, 209, 10.1002/jcc.540100208

Stewart, 1989, Optimization of parameters for semiempirical methods II. Applications, J Comput Chem, 10, 221, 10.1002/jcc.540100209

Stewart, 1990, Mopac: a semiempirical molecular orbital program, J Computer-Aided Mol Des, 4, 1, 10.1007/BF00128336

Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JJP, Head-Gordon M, Gonzalez C, Pople JA. Gaussian 94. Gaussian Inc., Pittsburgh, PA, 1995.

Herndon, 1992, Empirical model calculations for thermodynamic and structural properties of condensed polycyclic aromatic hydrocarbons, J Am Chem Soc, 114, 41, 10.1021/ja00027a005

Pope, 1995, Thermochemical properties of curved PAH and fullerenes: a group additivity method compared with MM3 (92) and Mopac predictions, J Phys Chem, 99, 4306, 10.1021/j100012a062

Wang, 1993, Enthalpies of formation of benzenoid aromatic molecules and radicals, J Phys Chem, 97, 3867, 10.1021/j100117a038

Peck, 1990, Ab initio heats of formation of medium-sized hydrocarbons 12. 6-31G studies of the benzenoid aromatics, J Phys Chem, 94, 6637, 10.1021/j100380a022

Stein, 1978, On the high temperature chemical equilibria of polycyclic aromatic hydrocarbons, J Phys Chem, 82, 566, 10.1021/j100494a600

Stein, 1985, High temperature stabilities of hydrocarbons, J Phys Chem, 82, 3714, 10.1021/j100263a027

Godleski, 1981, The systematic prediction of the most stable neutral hydrocarbon isomer, Prog Phys Org Chem, 13, 63, 10.1002/9780470171929.ch2

Lam FW, Howard JB, Longwell JP. The behavior of polycyclic aromatic hydrocarbons during the early stages of soot formation. Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1988. p. 323–32

Fletcher, 1998, Mass spectrometry of particles formed in a deuterated ethene diffusion flame, Anal Chem, 70, 2745, 10.1021/ac971293q

Dobbins, 1998, The evolution of soot precursor particles in a diffusion flame, Combust Flame, 115, 285, 10.1016/S0010-2180(98)00010-8

Alberty, 1989, Thermodynamics of the formation of benzene series polycyclic aromatic hydrocarbons in a benzene flame, J Phys Chem, 93, 3299, 10.1021/j100345a081

Alberty RA. Use of analytical expressions for the calculation of equilibrium distributions of polycyclic aromatic hydrocarbons in benzene flames. Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1990. p. 487–94.

Goeres, 1996, Circumstellar carbon condensation: I. Low-p, T stabilities of polyaromatic hydrocarbons, Polycycl Arom Compound, 8, 129, 10.1080/10406639608048341

DiNaro JL. Oxidation of benzene in supercritical water: experimental measurements and development of an elementary reaction mechanism. PhD thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, 1999.

DiNaro, 2000, Experimental measurements of benzene oxidation in supercritical water, AIChE J, 10.1002/aic.690461118

Kaiser, 1996, Kinetics of the reactions of chlorine atoms with C2H4 (k1) and C2H4 (k2): a determination of ΔHf,298 for C2H3, J Phys Chem, 100, 4111, 10.1021/jp953178u

Tsang, 1996, 22

Klippenstein, 1999, A theoretical study of the kinetics of C2H3+H, Phys Chem Chem Phys, 1, 989, 10.1039/a808515c

Knyazev, 1996, Experimental and theoretical study of the C2H3⇄H+C2H2 reaction. Tunneling and the shape of falloff curves, J. Phys. Chem., 100, 16899, 10.1021/jp953218u

Knyazev, 1996, Kinetics of the C2H3+H2⇄H+C2H4 and CH3+H2⇄H+CH4 reactions, J Phys Chem, 100, 11346, 10.1021/jp9606568

Fahr, 1999, Pressure effect on CH3 and C2H3 cross-radical reactions, J Phys Chem A, 103, 8433, 10.1021/jp9923522

Steinfield, 1989

Robinson, 1972

Forst, 1973

Rice, 1927, Theories of unimolecular gas reactions at low pressures, J Am Chem Soc, 49, 1617, 10.1021/ja01406a001

Rice, 1928, Theories of unimolecular gas reactions at low pressures II, J Am Chem Soc, 50, 617, 10.1021/ja01390a002

Kassel, 1928, Studies in homogeneous gas reactions I, J Phys Chem, 32, 225, 10.1021/j150284a007

Warnatz, 1983, The mechanism of high temperature combustion of propane and butane, Combust Sci Technol, 34, 177, 10.1080/00102208308923692

Westmoreland, 1986, Prediction of rate constants for combustion and pyrolysis reactions by bimolecular QRRK, AIChE J, 32, 1971, 10.1002/aic.690321206

Dean, 1991, CHEMACT: a computer code to estimate rate constants for chemically-activated reactions, Combust Sci Technol, 80, 63, 10.1080/00102209108951777

Bozzelli JW. Personal communication.

Marcus, 1952, Unimolecular dissociations and free radical recombination reactions, J Chem Phys, 20, 359, 10.1063/1.1700424

Yu, 1995, Kinetics of the phenyl radical reaction with ethylene: an RRKM theoretical analysis of low and high temperature data, Combust Flame, 100, 169, 10.1016/0010-2180(94)00085-7

Yu, 1994, Kinetics of the C6H5+O2 reaction at low temperatures, J Am Chem Soc, 116, 9571, 10.1021/ja00100a022

Bedanov, 1995, Master equation analysis of thermal activation reactions: reversible isomerization and decomposition, J Phys Chem, 99, 11452, 10.1021/j100029a024

Tsang, 1996, Master equation analysis of thermal activation reactions: energy-transfer constraints on falloff behavior in the decomposition of reactive intermediates with low thresholds, J Phys Chem, 100, 4011, 10.1021/jp9524901

Tsang, 1997, Unimolecular decomposition of large organic radicals with low reaction thresholds: decomposition and reversible isomerization of n-pentyl radicals, Ber Bunsenges Phys Chem, 101, 491, 10.1002/bbpc.19971010323

Knyazev, 1999, Incorporation of non-steady-state unimolecular and chemically activated kinetics into complex kinetic schemes. 1. Isothermal kinetics at constant pressure, J Phys Chem A, 103, 3944, 10.1021/jp984423n

Hausmann M, Hebgen P, Homann K-H, Radicals in flames: analysis via radical scavenging reaction. Twenty-fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1992. p. 793–801.

Susnow, 1997, Rate-based construction of kinetic models for complex systems, J Phys Chem A, 101, 3731, 10.1021/jp9637690

Venkatesh, 1997, Parameterization of pressure- and temperature-dependent kinetics in multiple well reactions, AIChE J, 43, 1331, 10.1002/aic.690430522

Venkatesh, 1997, Chebyshev expansions and sensitivity analysis for approximating the temperature- and pressure- dependence of chemically-activated reactions, Rev Chem Engng, 13, 1, 10.1515/REVCE.1997.13.1.1

Venkatesh, 2000, Damped pseudospectral functional forms of the falloff behavior of unimolecular reactions, J Phys Chem A, 104, 280, 10.1021/jp991458u