Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils
Tóm tắt
Từ khóa
Tài liệu tham khảo
Moncada, S. & Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329, 2002–2012 (1993).
Wei, X.et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408–411 (1995).
Beckman, J. S. Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9, 836–844 (1996).
Beckman, J. S.et al. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol. Chem. Hoppe-Seyler 375, 81–88 (1994).
Kaur, H. & Halliwell, B. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett. 350, 9–12 (1994).
Kooy, N. W., Royall, J. A., Ye, Y. Z., Kelly, D. R. & Beckman, J. S. Evidence for in vivo peroxynitrite production in human acute lung injury. Am. J. Respir. Crit. Care Med. 151, 1250–1254 (1995).
Singer, I. I.et al. Expression of inducible nitric oxide synthease and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 111, 871–885 (1996).
Saleh, D., Barnes, P. J. & Giaid, A. Increased production of the potent oxidant peroxynitrite in the lungs of patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 155, 1763–1769 (1997).
Eiserich, J. P., Cross, C. E., Jones, A. D., Halliwell, B. & van der Vliet, A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J. Biol. Chem. 271, 19199–19208 (1996).
Van der Vliet, A., Eiserich, J. P., Halliwell, B. & Cross, C. E. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J. Biol. Chem. 272, 7617–7625 (1997).
Klebanoff, S. J. & Clark, R. A. in The Neutrophil: Function and Clinical Disorders (North Holland Publishing, Amsterdam, 1978).
Hazen, S. L., Hsu, F. F., Mueller, D. M., Crowley, J. R. & Heinecke, J. W. Human neutrophils employ chlorine gas as an oxidant during phagocytosis. J. Clin. Invest. 98, 1283–1289 (1996).
Weiss, S. J., Lampert, M. B. & Test, S. T. Long-lived oxidants generated by human neutrophils. Characterization and bioactivity. Science 222, 625–628 (1983).
Domigan, N. M., Charlton, T. S., Duncan, M. W., Winterbourn, C. C. & Kettle, A. J. Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neutrophils. J. Biol. Chem. 270, 16542–16548 (1995).
Farrell, A. J., Blake, D. R., Palmer, R. M. J. & Moncada, S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis. 51, 1219–1222 (1992).
Torre, D.et al. Serum concentrations of nitrite in patients with HIV-1 infection. J. Clin. Pathol. 49, 574–576 (1996).
Gaston, B.et al. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc. Natl Acad. Sci. USA 90, 10957–10961 (1993).
Kettle, A. J., Gedye, C. A., Hampton, M. B. & 1Winterbourn, C. C. Inhibition of myeloperoxidase by benzoic acid hydrazides. Biochem. J. 308, 559–563 (1995).
Heinecke, J. W., Li, W., Daehnke, H. L. & Goldstein, J. A. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J. Biol. Chem. 268, 4069–4077 (1993).
Prütz, W. A., Mönig, H., Butler, J. & Land, E. J. Reactions of nitrogen dioxide in aqueous model systems. Oxidation of tyrosine units in peptides and proteins. Arch. Biochem. Biophys. 243, 125–134 (1985).
Mooradian, D. L., Hutsell, T. C. & Keefer, L. K. Nitric oxide (NO) donor molecules. Effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J. Cardiovasc. Pharmacol. 25, 674–678 (1995).
Chen, X. & Catravas, J. D. Neutrophil-mediated endothelial angiotensin-converting enzyme dysfunction. Role of oxygen-derived free radicals. Am. J. Physiol. 265, L243–L249 (1993).
Corvol, P., Williams, T. A. & Soubrier, F. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol. 248, 283–305 (1995).
Daugherty, A., Dunn, J. L., Rateri, D. L. & Heinecke, J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94, 437–444 (1994).
Hazen, S. L. & Heinecke, J. W. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J. Clin. Invest. 99, 2075–2081 (1997).
Evans, T. J.et al. Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proc. Natl Acad. Sci. USA 93, 9553–9558 (1996).
Klebanoff, S. J. Reactive nitrogen intermediates and antimicrobial activity. Role of nitrite. Free Rad. Biol. Med. 14, 351–360 (1993).
Gunther, M. R.et al. Nitric oxide trapping of the tyrosyl radical of prostaglandin H synthease-2 leads to tyrosine iminoxyl radical and nitrotyrosine formation. J. Biol. Chem. 272, 17086–17090 (1997).