Formation of nano-sized cubic zirconia by aqueous sol–gel route

Journal of the Australian Ceramic Society - Tập 54 - Trang 691-700 - 2018
Ram Gopal1, Jyoti Jain1, Ankit Goyal2, Deepak Kumar Gupta3, Meena Nagar1
1Department of Chemistry, University of Rajasthan, Jaipur, India
2Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology, Jaipur, India
3Center For Converging Technologies, Rajasthan University, Jaipur, India

Tóm tắt

Nanocrystalline cubic zirconia particles were synthesized from [Zr{OPri}4] (A), [Zr{OPri}3{ONC9H6}] (1) and [Zr{OPri}2{ONC9H6}2] (2) {where, ONC9H6 = 8-hydroxyquinoline}. Formation of all the precursors was confirmed by elemental analysis, FT-IR and NMR (1H and 13C). The thermal stability of complexes (1) and (2) has been studied by thermal gravimetric analysis. Zirconia samples (a), (b), and (c) were formed by aqueous sol–gel transformations of (A), (1) and (2), respectively. All the oxide samples were characterized for its phase, crystallite size, and strain present by XRD and TEM. Surface morphologies of all the samples were investigated by SEM. Selected area diffraction (SAED) of (b) and (c) was done to confirm the results of XRD. The absorption spectra of oxide samples, (a), (b), and (c) show energy band gap of 3.17, 4.10, and 4.13 eV, respectively.

Tài liệu tham khảo

Tahmasebpour, M., Babaluo, A.A., RazaviAghjeh, M.K.: J Eur Ceram Soc. 28, 773 (2008) Gorte, R.J., Park, S., Vohs, J.M., Wang, C.: Adv Mater. 12(19), 1465 (2000) Yamaguchi, T.: Catal Today. 20, 199 (1994) Yoon, H.J., Bang, K.S., Lim, J.W., Yun Lee, S.: J Mater Sci Mater Electron. 27, 11358 (2016). https://doi.org/10.1007/s10854-016-5260-4 Wright, P.K., Evans, A.G.: Curr Opin Solid State Mater Sci. 4, 255 (1999) El-Atab, N., Ulusoy, T.G., Ghobadi, A., Suh, J., Islam, R., Okyay, A.K., Saraswat, K.: A NayfehNanotechnology. 28, 44 (2017) Basahel, S.N., Ali, T.T., Mokhtar, M., Narasimharao, K.: Nanoscale Res Lett. 10, 73 (2015) Miura, N., Sato, T., Anggraini, S.A., Ikeda, H., Zhuiykov, S.: Ionics. 20, 901 (2014) Tamrakar, R.K., Bisen, D.P., Upadhyay, K., Tiwari, S.: JRadiat Res. Appl Sci. 7, 486 (2014) Abd El-Ghany, O.S., Sherief, A.H.: Future Dental Journal. 2, 55 (2016) S2314718016300398 E.C. Subbarao, Zirconia—an Overview, pp. 1–24 in Advances in ceramics, Vol. 3, Science and Technology of Zirconia, Edited by A. H. Heuer and L. W. Hobbs. American Ceramic Society, Columbus USA, 1981 Block, S., Jornada, J.A.H.D., Piermarini, G.J.: J Am Ceram Soc. 68(9), 497 (1985) Sheu, T.-S., Tien, T.-Y., I-W Chen, J.: Am Ceram Soc. 94(5), 1410 (2011) O.A. Graeve, Zirconia. In Ceramic and glass materials; Schakelford, J.F., Doremus, R.H., Eds., Chapter 10, pp 169–197, (Springer, New York, 2008) Shi, F., Li, Y., Wang, H., Zhang, Q.: Prog Nat Sci: Materials International. 22(1), 15 (2012) Peng, W., Pickrell, G.R., Wang, A.: Opt Eng. 441, 124402 (2005) Gurushantha, K., Anantharaju, K.S., Sharma, S.C., Nagaswarupa, H.P., Prashantha, S.C., Mahesh, K.R.V., Renuka, L., Vidya, Y.S., Nagabhushana, H.: J Alloys Compd. 685, 761 (2016) Xiao, M., Li, Y., Lua, Y., Ye, Z.: J Mater Chem A. 3, 2701 (2015) Niasari, M.S., Dadkhah, M., Nourani, M.R., Fazl, A.A.: J Clust Sci. 23, 1011 (2012). https://doi.org/10.1007/s10876-012-0488-5 Tietz, L.A., Carter, C.B., Lathrop, D.K., Russek, S.E., Buhrman, R.A., Michael, J.R.: J Mater Res. 4, 1072 (1989) Xu, G., Zhang, Y.W., Liao, C.S., Yan, C.H.: Solid State Ionics. 166, 391 (2004) Zhang, Y.W., Yan, Z.G., Liao, F.H., Liao, C.S., Yan, C.H.: Mater Res Bull. 39, 1763 (2004) Lee, H.Y., Iehemann, W., Mordike, B.L.: J Eur Ceram Soc. 10, 245 (1992) Danks, A.E., Hall, S.R., Schnepp, Z.: Mater Horiz. 3, 91 (2016) Jain, J., Nagar, M.: J Sol-Gel Sci Technol. 71, 447 (2014) Chaudhary, A., Gopal, R., Nagar, M., Bohra, R.: J Sol-Gel Sci Technol. 69, 102 (2014) Sanwaria, A.R., Nagar, M., Bohra, R., Chaudhary, A., Mobin, S.M., Mathur, P., Choudhary, B.L.: RSC Adv. 4, 30081 (2014). https://doi.org/10.1039/C4RA03245D Chaudhary, A., Sharma, N., Nagar, M., Mobin, S.M., Mathur, P., Bohra, R.: J Sol-Gel Sci Technol. 70(3), 464 (2014) Sanwaria, R., Sharma, N., Chaudhary, A., Nagar, M.: J Sol-Gel Sci Technol. 68, 245 (2013) Chaudhary, A., Dhayal, V., Nagar, M., Bohra, R., Mobin, S.M., Mathur, P.: Polyhedron. 30, 821 (2011) Dhayal, V., Chaudhary, A., Choudhary, B.L., Nagar, M., Bohra, R., Mobin, S.M., Mathur, P.: Dalton Trans. 41, 9439 (2012) Livage, J., Henry, M., Sanchez, C.: Prog Solid State Chem. 18, 259 (1988) Hench, L.L., West, J.K.: Chem Rev. 90, 33 (1990) Schubert, U.: Acc Chem Res. 40, 730 (2007) Bradley, D.C., Mehrotra, R.C., Rothwell, I.P., Singh, A.: Alkoxo and aryloxo derivatives of metals. Academic Press, London (2001) Kessler, V.G., Spijksma, G.I., Seisenbaeva, G.A., Hakansson, S., Blank, D.H.A., Bouwmeester, H.J.M.: J Sol-Gel Sci Technol. 40, 163 (2006) Schubert, U.: J Mater Chem. 15, 3701 (2005) A.I. Vogel, A Text Book of quantitative inorganic analysis, 5th ed. (Longman, London, 1989) Bradley, D.C., Wardlaw, W.: Nature. 165, 75 (1950) D.C. Bradley, F.M. Abd-el-Halim, R.C. Mehrotra, W. Wardlaw, J Chem Soc 4609 (1952) B.E. Warren, (eds) X-ray diffraction (Chapter 13), (Dover Publication, New York, 1990) Maulik, O., Kumar, V.: Mater Charact. 110, 116 (2015) Wang, S.F., Gu, F., Lu, M.K., ZS Yang, G.J., Zhou, H.P., Zhang, Y.Y., Zhou, S.M.W.: Opt Mater. 28, 1222 (2006) Rambabu, U., Munirathnam, N.R., Prakash, T.L., Vengalrao, B., Buddhudu, S.: J Mater Sci. 42, 9262 (2007) Niasari, M.S., Dadkhah, M., Davar, F.: Inorg Chim Acta. 362, 3969 (2009) J. Tauc, Amorphous & liquid semiconductors, (Plenum, New York, 1974) Wilson, W.L., Szajowski, P.J., Brus, L.E.: Science. 262, 1242 (1993) Mazdiyasni, K.S., Lynch, C.T., Smith, J.S.: J Am Chem Soc. 48, 372 (1965)