Formation of magnesium silicate hydrates (M-S-H)

Physics and Chemistry of the Earth, Parts A/B/C - Tập 99 - Trang 142-157 - 2017
Ellina Bernard1, Barbara Lothenbach1, Daniel Rentsch2, Isabelle Pochard3, Alexandre Dauzères4
1Empa, Laboratory for Concrete & Construction Chemistry, 8600 Dübendorf, Switzerland
2Empa, Laboratory for Functional Polymers, 8600 Dübendorf, Switzerland
3Université Bourgogne-Franche-Comté, 21078 Dijon, France
4IRSN, Institute of Radiation Protection and Nuclear Safety, BP 17, 92262 Fontenay aux Roses, France

Tài liệu tham khảo

Anderson, 1993 Brantley, 2008 Brew, 2005, The magnesia–silica gel phase in slag cements: alkali (K, Cs) sorption potential of synthetic gels, Cem. Concr. Res., 35, 77, 10.1016/j.cemconres.2004.03.016 Brew, 2005, Synthesis and characterisation of magnesium silicate hydrate gels, Cem. Concr. Res., 35, 85, 10.1016/j.cemconres.2004.06.022 Chabrol, 2010, Functionalization of synthetic talc-like phyllosilicates by alkoxyorganosilane grafting, J. Mater. Chem., 20, 9695, 10.1039/c0jm01276a Cong, 1996, 29 Si MAS NMR study of the structure of calcium silicate hydrate, Adv. Cem. Based Mater., 3, 144, 10.1016/S1065-7355(96)90046-2 d'Espinose de Lacaillerie, 1995, 29Si NMR observation of an amorphous magnesium silicate formed during impregnation of silica with Mg(II) in aqueous solution, J. Phys. Chem., 99, 17273, 10.1021/j100047a036 Dauzères, 2016, Magnesium perturbation in low-pH concretes placed in clayey environment—solid characterizations and modeling, Cem. Concr. Res., 79, 137, 10.1016/j.cemconres.2015.09.002 Dauzères, 2014, On the physico-chemical evolution of low-pH and CEM I cement pastes interacting with Callovo-Oxfordian pore water under its in situ CO2 partial pressure, Cem. Concr. Res., 58, 76, 10.1016/j.cemconres.2014.01.010 Deschner, 2012, Hydration of Portland cement with high replacement by siliceous fly ash, Cem. Concr. Res., 42, 1389, 10.1016/j.cemconres.2012.06.009 Dumas, 2013, Phyllosilicates synthesis: a way of accessing edges contributions in NMR and FTIR spectroscopies. Example of synthetic talc, Phys. Chem. Minerals, 40, 361, 10.1007/s00269-013-0577-5 Garcia Calvo, 2010, Development of low-pH cementitious materials for HLRW repositories: resistance against ground waters aggression, Cem. Concr. Res., 40, 1290, 10.1016/j.cemconres.2009.11.008 Gionis, 2006, On the structure of palygorskite by mid-and near-infrared spectroscopy, Am. Mineral., 91, 1125, 10.2138/am.2006.2023 Golubeva, 2005, Hydrothermal synthesis of magnesium silicate montmorillonite for polymer-clay nanocomposites, Russ. J. Appl. Chem., 78, 26, 10.1007/s11167-005-0225-z Gunnarsson, 2000, Amorphous silica solubility and the thermodynamic properties of H4SiO4 in the range of 0 to 350°C at Psat, Geochimica Cosmochimica Acta, 64, 2295, 10.1016/S0016-7037(99)00426-3 Haas, 2015, From C–S–H to C–A–S–H: experimental study and thermodynamic modelling, Cem. Concr. Res., 68, 124, 10.1016/j.cemconres.2014.10.020 Helgeson, 1978, Summary and critique of the thermodynamic properties of rock-forming minerals, Am. J. Sci., 278, 1 Holland, 1998, An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309, 10.1111/j.1525-1314.1998.00140.x Jenni, 2014, In situ interaction between different concretes and Opalinus clay, Phys. Chem. Earth, Parts A/B/C, 70, 71, 10.1016/j.pce.2013.11.004 Jin, 2013, Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature, Thermochim. Acta, 566, 162, 10.1016/j.tca.2013.05.036 Kalousek, 1954, Studies on formation and recrystallization of intermediate reaction products in the system magnesia-silica-water, J. Am. Ceram. Soc., 37, 38, 10.1111/j.1151-2916.1954.tb14001.x Kulik, 2002, Minimising uncertainty induced by temperature extrapolations of thermodynamic data: a pragmatic view on the integration of thermodynamic databases into geochemical computer codes, 125 Kulik, 2013, GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes, Comput. Geosci., 17, 1 L’Hopital, 2016, Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate, Cem. Concr. Res., 85, 111, 10.1016/j.cemconres.2016.01.014 Li, 2014, Characterization of reaction products and reaction process of MgO–SiO2–H2O system at room temperature, Constr. Build. Mater., 61, 252, 10.1016/j.conbuildmat.2014.03.004 Lothenbach, 2016, Thermogravimetric analysis, 177 Lothenbach, 2015, Calcium silicate hydrates: solid and liquid phase composition, Cem. Concr. Res., 78, 57, 10.1016/j.cemconres.2015.03.019 MacKenzie, 1994, Thermal reaction of chrysotile revisited: a 29Si and 25Mg NMR study, Am. Mineral, 79, 43 Massiot, 2002, Modelling one-and two-dimensional solid-state NMR spectra, Magnetic Reson. Chem., 40, 70, 10.1002/mrc.984 Melekhova, 2006, The reaction talc + forsterite = enstatite + H2O revisited: application of conventional and novel experimental techniques and derivation of revised thermodynamic properties, Am. Mineral., 91, 1081, 10.2138/am.2006.2065 Merkel, 2008 Mitsuda, 1977, Formation of magnesium silicate hydrate and its crystallzation to talc, Cem. Concr. Res., 7, 223, 10.1016/0008-8846(77)90083-7 Nied, 2016, Properties of magnesium silicate hydrates (MSH), Cem. Concr. Res., 79, 323, 10.1016/j.cemconres.2015.10.003 Nied, 2011 Plusquellec, 2014 Pokrovsky, 2004, Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control, Geochimica Cosmochimica Acta, 68, 31, 10.1016/S0016-7037(03)00238-2 Rhouta, 2008, Elucidating the crystal-chemistry of Jbel Rhassoul stevensite (Morocco) by advanced analytical techniques, Clay Miner., 43, 393, 10.1180/claymin.2008.043.3.05 Roosz, 2016, Distribution of water in synthetic calcium silicate hydrates, Langmuir, 32, 6794, 10.1021/acs.langmuir.6b00878 Roosz, 2015, Crystal structure of magnesium silicate hydrates (MSH): the relation with 2: 1 Mg–Si phyllosilicates, Cem. Concr. Res., 73, 228, 10.1016/j.cemconres.2015.03.014 Salomão, 2008, Efeito da adição de microssílica na hidratação de óxido de magnésio em concretos refratários (Microsilica addition as anti-hydration technique of magnesia in refractory castables), Cerâmica, 54, 43, 10.1590/S0366-69132008000100007 Szczerba, 2013, Influence of time and temperature on ageing and phases synthesis in the MgO–SiO2–H2O system, Thermochim. Acta, 567, 57, 10.1016/j.tca.2013.01.018 Tardy, 1992, A method of estimating the Gibbs free energies of formation of hydrated and dehydrated clay minerals, Geochimica Cosmochimica Acta, 56, 3007, 10.1016/0016-7037(92)90287-S Thoenen, 2014, 14 Walling, 2015, Structure and properties of binder gels formed in the system Mg(OH)2-SiO2-H2O for immobilisation of Magnox sludge, Dalton Trans., 44, 8126, 10.1039/C5DT00877H Wei, 2011, Reaction products of MgO and microsilica cementitious materials at different temperatures, J. Wuhan Univ. Technol.-Mater. Sci, 26, 745, 10.1007/s11595-011-0304-3 Welch, 1992, Characterization of polysomatism in biopyriboles: double-/triple-chain lamellar intergrowths, Phys. Chem. minerals, 18, 460, 10.1007/BF00200969 Yang, 1960, The system magnesia-silica-water below 300° C.: I, Low-temperature phases from 100° to 300° C. and their properties, J. Am. Ceram. Soc., 43, 542, 10.1111/j.1151-2916.1960.tb13610.x Yu, 1999, Structure of calcium silicate hydrate (C-S-H): near-, Mid-, and Far-infrared spectroscopy, J. Am. Ceram. Soc., 82, 742, 10.1111/j.1151-2916.1999.tb01826.x Zhang, 2011, Development of low pH cement systems forming magnesium silicate hydrate (MSH), Cem. Concr. Res., 41, 439, 10.1016/j.cemconres.2011.01.016