Formation of an organic film on an electrode via a suspension of redox-active droplets in acidic aqueous solution
Tài liệu tham khảo
Franklin, 1980, Oxidative voltammetry of organic compounds at platinum electrodes in micelle and emulsion systems, Anal. Chem., 52, 973, 10.1021/ac50056a045
Watkins, 2015, Application of ionic liquids, emulsions, sonication, and microwave assistance, 331
Marken, 2019, Multiphase methods in organic electrosynthesis, Acc. Chem. Res., 52, 3325, 10.1021/acs.accounts.9b00480
B.A. Barth, A. Imel, K. McKensie Nelms, G.A. Goenaga, T. Zawodzinski, Microemulsions: breakthrough electrolytes for redox flow batteries, Front. Chem. 10 (2022) 831200, 10.3389/fchem.2022.831200.
Chen, 2021, A study of ferrocene diffusion in toluene/Tween 20/1-butanol/water microemulsions for redox flow battery applications, J. Electrochem. Soc., 168
Nakao, 2023, Electrochemistry in bicontinuous microemulsions derived from two immiscible electrolyte solutions for a membrane-free redox flow battery, J. Coll. Interface. Sci., 641, 348, 10.1016/j.jcis.2023.03.060
Zheng, 2023, Non-aqueous organic redox active materials for a bicontinuous microemulsion-based redox flow battery, Materials Today Energy, 34, 10.1016/j.mtener.2023.101286
Matsubara, 1986, In situ voltammetric determinations of solute distribution coefficients in emulsions, J. Colloid Interface Sci., 112, 421, 10.1016/0021-9797(86)90110-4
Texter, 1987, Partitioning of para-phenylenediamines in oil-in-water emulsions, J. Colloid Interface Sci., 120, 389, 10.1016/0021-9797(87)90366-3
Georges, 1986, Electrochemical oxidation of hydrophobic compounds in aqueous micellar solutions and oil-in-water emulsions, Electrochim. Acta, 31, 1519, 10.1016/0013-4686(86)87070-0
Marken, 1998, Sonoelectrochemically modified electrodes: ultrasound assisted electrode cleaning, conditioning, and product trapping in 1-octanol/water emulsion systems, Electrochim. Acta, 43, 2157, 10.1016/S0013-4686(97)10008-1
Chen, 2001, Electrode reaction of ferrocene in a nitrobenzene + water emulsion, J. Electroanal. Chem., 496, 88, 10.1016/S0022-0728(00)00240-0
Yoshida, 2003, Electrochemical coalescence of nitrobenzene ∣ water emulsions, J. Electroanal. Chem., 553, 117, 10.1016/S0022-0728(03)00304-8
Peng, 2020, Electron transfer in microemulsion-based electrolytes, ACS Appl, Mater. Interfaces, 12, 40213, 10.1021/acsami.0c07028
Peng, 2021, Electrolyte effects on the electrochemical performance of microemulsions, Electrochim. Acta 393, 10.1016/j.electacta.2021.139048
Ramos, 2023, Structure, partitioning, and transport behavior of microemulsion electrolytes: molecular dynamics and electrochemical study, J. Mol. Liq., 380
Imel, 2022, Microemulsions as emerging electrolytes: the correlation of structure to electrochemical response, ACS Appl. Mater. Interfaces, 14, 20179, 10.1021/acsami.2c00181
Tichter, 2021, A theoretical framework for the electrochemical characterization of anisotropic micro-emulsions, ChemElectroChem, 8, 3397, 10.1002/celc.202100600
Kim, 2014, Characterizing emulsions by observation of single droplet collisions—attoliter electrochemical reactors, J. Am. Chem. Soc., 136, 4849, 10.1021/ja500713w
Cheng, 2015, Oxygen reduction mediated by single nanodroplets containing attomoles of vitamin B12: electrocatalytic nano-impacts method, Angew. Chem. Int. Ed., 54, 7082, 10.1002/anie.201501820
Liu, 2017, Single organic droplet collision voltammogram via electron transfer coupled ion transfer, Anal. Chem., 89, 9284, 10.1021/acs.analchem.7b02072
Shul, 2005, Ion transfer across liquid–liquid interface coupled to electrochemical redox reaction at carbon paste electrode, Electrochem. Commun., 7, 194, 10.1016/j.elecom.2004.12.008
Su, 2008, H2O2 generation by decamethylferrocene at a liquid|liquid interface, Angew. Chem. Int. Ed., 47, 4675, 10.1002/anie.200801004
Hatay, 2009, Hydrogen evolution at liquid–liquid interfaces, Angew. Chem. Int. Ed., 48, 5139, 10.1002/anie.200901757
Opallo, 2022, Hydrogen evolution, oxygen evolution, and oxygen reduction at polarizable liquid|liquid interfaces, ChemElectroChem, 9, e202200513, 10.1002/celc.202200513
Gamero-Quijano, 2023, Electrocatalysis at the polarised interface between two immiscible electrolyte solutions, Curr. Opin. Electrochem., 38
Stockmann, 2010, Hydrophobicity of room temperature ionic liquids assessed by the Galvani potential difference established at micro liquid/liquid interfaces, J. Electroanal. Chem., 649, 23, 10.1016/j.jelechem.2009.12.024
Batchelor-McAuley, 2016, Fluorescence monitored voltammetry of single attoliter droplets, Anal. Chem., 88, 11213, 10.1021/acs.analchem.6b03524
Banks, 2003, Electrochemistry of immobilised redox droplets: concepts and applications, Phys. Chem. Chem. Phys., 5, 4053, 10.1039/b307326m
Scholz, 2015, Immobilized droplets, in Electrochemistry of Immobilized Particles and Droplets, Springer, 225
Komorsky-Lovric, 2001, Cyclic voltammetry of decamethylferrocene at the organic liquid∣aqueous solution∣graphite three-phase junction, J. Electroanal. Chem., 508, 129, 10.1016/S0022-0728(01)00527-7
Deng, 2014, Surprising acidity of hydrated lithium cations in organic solvents, Chem. Commun., 50, 5554, 10.1039/C4CC01892C
Rastgar, 2020, Catalytic activity of alkali metal cations for the chemical oxygen reduction reaction in a biphasic liquid system probed by scanning electrochemical microscopy, Chem. Eur. J., 26, 10882, 10.1002/chem.202001967
Shul, 2008, Ion insertion into ionic liquid supported toluene generated by electrochemical redox reaction, Electrochem. Commun., 10, 1201, 10.1016/j.elecom.2008.05.048
Bond, 1994, Mechanistic aspects of the electron and ion transport processes across the electrode|solid|solvent (electrolyte) interface of microcrystalline decamethylferrocene attached mechanically to a graphite electrode, J. Electroanal. Chem., 372, 125, 10.1016/0022-0728(93)03257-P
Wei, 2008, Applications of ionic liquids in electrochemical sensors, Anal. Chem. Acta, 607, 126, 10.1016/j.aca.2007.12.011
Opallo, 2011, A review on electrodes modified with ionic liquids, J. Electroanal. Chem., 656, 2, 10.1016/j.jelechem.2011.01.008
Wang, 2020, Electrode material–ionic liquid coupling for electrochemical energy storage, Nature Rev. Mater., 5, 787, 10.1038/s41578-020-0218-9
Liu, 2013, Hydrophobic ionic liquid immobilizing cholesterol oxidase on the electrodeposited Prussian blue on glassy carbon electrode for detection of cholesterol, Electrochim. Acta, 90, 203, 10.1016/j.electacta.2012.11.119
Czarnecki, 2017, Application of Scheludko-Exerowa thin liquid film technique to studies of petroleum W/O emulsions, Coll. Surf. A, 519, 2, 10.1016/j.colsurfa.2016.04.040