Formation of an intermediate band in the energy gap of TiO2 by Cu–N-codoping: First principles study and experimental evidence
Tài liệu tham khảo
Fujishima, 2006, Titanium dioxide photocatalysis: present situation and future approaches, Chimie, 9, 750, 10.1016/j.crci.2005.02.055
Zaleska, 2008, Doped-TiO2: a review, Recent Pat. Eng., 2, 157, 10.2174/187221208786306289
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
Ni, 2009, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev., 11, 401, 10.1016/j.rser.2005.01.009
Ghosh, 2012, Ab initio study on optoelectronic properties of interstitially versus substitutionally doped titania, Phys. Rev. B, 86, 235203-1, 10.1103/PhysRevB.86.235203
Dozzi, 2013, Doping TiO2 with p-block elements: effects on photocatalytic activity, J. Photochem. Photobiol. C, 14, 13, 10.1016/j.jphotochemrev.2012.09.002
Pelaez, 2012, Synthesis of highly photoactive TiO2 and Pt/TiO2 nanocatalysts for substrate-specific photocatalytic applications, Appl. Catal. B: Environ., 125, 331, 10.1016/j.apcatb.2012.05.036
Dholam, 2009, Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst, Int. J. Hydrog. Energy, 34, 5337, 10.1016/j.ijhydene.2009.05.011
Jaiswal, 2012, Improved visible light photocatalytic activity of TiO2 co-doped with vanadium and nitrogen, Appl. Catal. B: Environ., 126, 47, 10.1016/j.apcatb.2012.06.030
Zhu, 2009, Band gap narrowing of titanium oxide semiconductors by noncompensated anion–cation codoping for enhanced visible-light photoactivity, Phys. Rev. Lett., 103, 226401-1, 10.1103/PhysRevLett.103.226401
Gai, 2009, Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity, Phys. Rev. Lett., 102, 036402-1, 10.1103/PhysRevLett.102.036402
Wu, 2012, Quantum efficiency of intermediate-band solar cells based on non-compensated n–p codoped TiO2, J. Chem. Phys., 137, 104702-1, 10.1063/1.4750981
Blaha, 2001
Perdew, 2008, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett., 100, 136406-1, 10.1103/PhysRevLett.100.136406
Tran, 2009, Accurate band gaps of semiconductors and insulators with a semilocal exchange–correlation potential, Phys. Rev. Lett., 102, 226401-1, 10.1103/PhysRevLett.102.226401
Koller, 2011, Merits and limits of the modified Becke–Johnson exchange potential, Phys. Rev. B, 83, 195134, 10.1103/PhysRevB.83.195134
Jiang, 2013, Band gaps from the Tran-Blaha modified Becke–Johnson approach: a systematic investigation, J. Chem. Phys., 138, 134115-1, 10.1063/1.4798706
Rubio-Ponce, 2008, First-principles study of anatase and rutile TiO2 doped with Eu ions: a comparison of GGA and LDA+U calculations, Phys. Rev. B, 78, 035107-1, 10.1103/PhysRevB.78.035107
Duhalde, 2005, Appearance of room-temperature ferromagnetism in Cu-doped TiO2−δ films, Phys. Rev. B, 72, 161313-1, 10.1103/PhysRevB.72.161313
Dholam, 2011, Efficient H2 production by water-splitting using indium-tin-oxide/V-doped TiO2 multilayer thin film photocatalyst, Int. J. Hydrog. Energy, 36, 6519, 10.1016/j.ijhydene.2011.03.028
Nakamura, 2004, Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes, J. Phys. Chem. B, 108, 10617, 10.1021/jp048112q
Ethiraj, 2012, Synthesis and characterization of CuO nanowires by a simple wet chemical method, Nanoscale Res. Lett., 7, 70-1, 10.1186/1556-276X-7-70
Bechara, 1993, X-ray photoelectron spectroscopic study of a Cu–Al–O catalyst under H2 or CO atmospheres, J. Chem. Soc., 89, 1257
López, 2009, Photophysical and photocatalytic properties of nanosized copper-doped titania sol–gel catalysts, Catal. Today, 148, 103, 10.1016/j.cattod.2009.04.001
Li, 2007, New synthesis of excellent visible-light TiO2−xNx photocatalyst using a very simple method, Solid State Chem., 180, 2630, 10.1016/j.jssc.2007.07.009