Formation of a p‐n heterojunction photocatalyst by the interfacing of graphitic carbon nitride and delafossite CuGaO2

Journal of the Chinese Chemical Society - Tập 69 Số 7 - Trang 1042-1050 - 2022
B. Martı́nez1,2,3, Dai‐Ning Chang4,2, Yucheng Huang5,6, Chung‐Li Dong5,6, Te‐Wei Chiu4, Ming‐Hsi Chiang7,2,3, Chun‐Hong Kuo1,2,6,3
1Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
2Institute of Chemistry, Academia Sinica, Taipei, Taiwan
3Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, Taiwan
4Department of Materials and Mineral Resources Engineering, Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, Taiwan
5Department of Physics, Tamkang University, New Taipei City, Taiwan
6National Synchrotron Radiation Research Center, Hsinchu, Taiwan
7Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan

Tóm tắt

AbstractPhotocatalysts have focused on scientific endeavors for five decades already. Their ability to generate solar fuel via relatively environmentally benign processes brings promises of a future with increasingly sustainable energy production. A class of materials, heterojunction (HJ) semiconductors, have immense potential due to their versatility, stability, and cost‐effectiveness. In addition, meticulous engineering of p‐n HJ enables the apparition of an electric field at the junction, a supplementary driving force that drives the charge carriers to separate effectively upon illumination. Therefore, we combined n‐type carbon nitride with p‐type CuGaO2 to form a photo‐active p‐n HJ. Mechanistic insights being highly sought‐after, we then employed X‐ray photoelectron spectroscopy and X‐ray absorption spectroscopy as complementary and orbital‐specific techniques to probe the changes caused by interfacing CuGaO2 with g‐C3N4.

Từ khóa


Tài liệu tham khảo

10.1039/C5EE01434D

10.1038/238037a0

10.1039/D0RA05779G

10.1021/cr100454n

10.1002/adma.201601694

Zou J., 2022, Chin. J. Struct. Chem., 41, 2201025

10.1016/S1872-2067(20)63559-8

10.1002/solr.201900423

10.1016/S1872-2067(19)63389-9

10.1021/ar300227e

10.1016/S1872-2067(20)63633-6

10.1016/j.apcatb.2021.120104

10.1039/C3CS60425J

10.1039/C6TA10497E

10.1038/natrevmats.2017.50

10.1021/cm051791c

10.1016/j.apsusc.2016.07.030

10.1038/nmat2317

10.1021/acs.jpclett.5b00236

10.1039/C1CP22820J

10.1002/asia.201200383

10.1039/b810064k

10.1002/adma.201604984

10.1039/c1jm12620b

10.1038/srep01743

10.1016/j.fuel.2018.12.011

10.1016/j.jes.2019.05.032

10.1021/acs.chemmater.7b01284

10.1016/j.ijhydene.2020.03.169

10.1016/j.jcis.2020.02.054

10.1039/C4NR05732E

10.1088/1361-6463/ab6791

10.1016/j.jallcom.2016.07.017

10.1038/srep21135

10.1016/j.ica.2006.07.061

10.1038/ncomms4783

10.1021/jp982704p

10.7567/JJAPS.32S2.98

10.1002/xrs.1103

10.2138/am-2004-0408