Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability

Journal of Membrane Science - Tập 540 - Trang 430-439 - 2017
Eunhee Jang1, Eunjoo Kim1, Heejoong Kim1, Taehee Lee1, Hee-Jong Yeom2, Young-Wook Kim2, Jungkyu Choi1
1Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea
2Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea

Tài liệu tham khảo

Momirlan, 2002, Current status of hydrogen energy, Renew. Sustain. Energy Rev., 6, 141, 10.1016/S1364-0321(02)00004-7 Sharma, 2015, Hydrogen the future transportation fuel: from production to applications, Renew. Sustain. Energy Rev., 43, 1151, 10.1016/j.rser.2014.11.093 Turner, 2004, Sustainable hydrogen production, Science, 305, 972, 10.1126/science.1103197 Ball, 2009, The future of hydrogen–opportunities and challenges, Int. J. Hydrog. Energy, 34, 615, 10.1016/j.ijhydene.2008.11.014 Ockwig, 2007, Membranes for hydrogen separation, Chem. Rev., 107, 4078, 10.1021/cr0501792 Amelio, 2007, Integrated gasification gas combined cycle plant with membrane reactors: technological and economical analysis, Energy Convers. Manag., 48, 2680, 10.1016/j.enconman.2007.04.023 Bracht, 1997, Water gas shift membrane reactor for CO2 control in IGCC systems: techno-economic feasibility study, Energy Convers. Manag., 38, S159, 10.1016/S0196-8904(96)00263-4 Kaldis, 2004, Energy and capital cost analysis of CO2 capture in coal IGCC processes via gas separation membranes, Fuel Process. Technol., 85, 337, 10.1016/S0378-3820(03)00204-2 Criscuoli, 2001, An economic feasibility study for water gas shift membrane reactor, J. Membr. Sci., 181, 21, 10.1016/S0376-7388(00)00374-4 Lima, 2012, Modeling and Optimization of Membrane Reactors for Carbon Capture in Integrated Gasification Combined Cycle Units, Ind. Eng. Chem. Res., 51, 5480, 10.1021/ie202234u Lima, 2016, Modeling, Optimization, and Cost Analysis of an IGCC Plant with a Membrane Reactor for Carbon Capture, AIChE J., 62, 1568, 10.1002/aic.15153 Lin, 2001, Microporous and dense inorganic membranes: current status and prospective, Sep. Purif. Technol., 25, 39, 10.1016/S1383-5866(01)00089-2 Kulprathipanja, 2005, Pd and Pd–Cu membranes: inhibition of H2 permeation by H2S, J. Membr. Sci., 254, 49, 10.1016/j.memsci.2004.11.031 Chen, 2010, The effect of H2S on the performance of Pd and Pd/Au composite membrane, J. Membr. Sci., 362, 535, 10.1016/j.memsci.2010.07.002 Braun, 2014, Pd-based binary and ternary alloy membranes: morphological and perm-selective characterization in the presence of H2S, J. Membr. Sci., 450, 299, 10.1016/j.memsci.2013.09.026 Peters, 2012, Hydrogen transport through a selection of thin Pd-alloy membranes: membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures, Catal. Today, 193, 8, 10.1016/j.cattod.2011.12.028 Shekhah, 2011, MOF thin films: existing and future applications, Chem. Soc. Rev., 40, 1081, 10.1039/c0cs00147c Ma, 2010, Gas storage in porous metal–organic frameworks for clean energy applications, Chem. Commun., 46, 44, 10.1039/B916295J Furukawa, 2013, The chemistry and applications of metal-organic frameworks, Science, 341, 1230444, 10.1126/science.1230444 Phan, 2010, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res., 43, 58, 10.1021/ar900116g Park, 2006, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103, 10186, 10.1073/pnas.0602439103 Banerjee, 2008, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science, 319, 939, 10.1126/science.1152516 Wang, 2008, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs, Nature, 453, 207, 10.1038/nature06900 Li, 2010, Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation, J. Membr. Sci., 354, 48, 10.1016/j.memsci.2010.02.074 Li, 2010, Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes, Adv. Mater., 22, 3322, 10.1002/adma.201000857 Li, 2010, Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity, Angew. Chem. Int. Ed., 49, 548, 10.1002/anie.200905645 Aceituno Melgar, 2014, Direct spraying approach for synthesis of ZIF-7 membranes by electrospray deposition, J. Membr. Sci., 459, 190, 10.1016/j.memsci.2014.02.020 Noh, 2015, Synthesis and characterization of ZIF-7 membranes by in situ method, J. Nanosci. Nanotechnol., 15, 575, 10.1166/jnn.2015.8347 Hara, 2014, Diffusive separation of propylene/propane with ZIF-8 membranes, J. Membr. Sci., 450, 215, 10.1016/j.memsci.2013.09.012 Huang, 2014, Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets, J. Mater. Chem. A, 2, 8246, 10.1039/C4TA00299G Huang, 2013, Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors, Chem. Commun., 49, 10326, 10.1039/c3cc46244g Kwon, 2015, Improving propylene/propane separation performance of zeolitic-imidazolate framework ZIF-8 membranes, Chem. Eng. Sci., 124, 20, 10.1016/j.ces.2014.06.021 Kwon, 2013, Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth, Chem. Commun., 49, 3854, 10.1039/c3cc41039k Kwon, 2013, In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation, J. Am. Chem. Soc., 135, 10763, 10.1021/ja403849c Li, 2013, Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis, Microporous Mesoporous Mater., 168, 15, 10.1016/j.micromeso.2012.09.029 Liu, 2013, Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes, J. Am. Chem. Soc., 135, 17679, 10.1021/ja4080562 Pan, 2011, Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions, Chem. Commun., 47, 10275, 10.1039/c1cc14051e Pan, 2012, Effective separation of propylene/propane binary mixtures by ZIF-8 membranes, J. Membr. Sci., 390–391, 93, 10.1016/j.memsci.2011.11.024 Xu, 2011, Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel, J. Membr. Sci., 385–386, 187, 10.1016/j.memsci.2011.09.040 Zhang, 2014, New membrane architecture with high performance: zif-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation, Chem. Mater., 26, 1975, 10.1021/cm500269e Zhu, 2015, Highly hydrogen-permselective zeolitic imidazolate framework ZIF-8 membranes prepared on coarse and macroporous tubes through repeated synthesis, Sep. Purif. Technol., 146, 68, 10.1016/j.seppur.2015.03.020 Huang, 2010, Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker, Angew. Chem. Int. Ed., 49, 4958, 10.1002/anie.201001919 Dong, 2012, Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination, J. Mater. Chem., 22, 19222, 10.1039/c2jm34102f Huang, 2011, Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity, Angew. Chem. Int. Ed., 50, 4979, 10.1002/anie.201007861 Huang, 2010, Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization, J. Am. Chem. Soc., 132, 15562, 10.1021/ja108774v Huang, 2012, Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance, Angew. Chem. Int. Ed., 51, 10551, 10.1002/anie.201204621 Huang, 2012, A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation, Chem. Commun., 48, 10981, 10.1039/c2cc35691k Bux, 2009, Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis, J. Am. Chem. Soc., 131, 16000, 10.1021/ja907359t Shah, 2013, One step in situ synthesis of supported zeolitic imidazolate framework ZIF-8 membranes: role of sodium formate, Microporous Mesoporous Mater., 165, 63, 10.1016/j.micromeso.2012.07.046 Yao, 2011, Contra-diffusion synthesis of ZIF-8 films on a polymer substrate, Chem. Commun., 47, 2559, 10.1039/c0cc04734a Bux, 2011, Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation, Chem. Mater., 23, 2262, 10.1021/cm200555s Yin, 2016, On the Zeolitic Imidazolate Framework-8 (ZIF-8) Membrane for Hydrogen Separation from Simulated Biomass-derived Syngas, Microporous Mesoporous Mater., 233, 70, 10.1016/j.micromeso.2015.10.033 Pan, 2015, Improved ZIF-8 membrane: effect of activation procedure and determination of diffusivities of light hydrocarbons, J. Membr. Sci., 493, 88, 10.1016/j.memsci.2015.06.019 Yu, 2016, ZIF-8 membranes with improved reproducibility fabricated from sputter-coated ZnO/alumina supports, Chem. Eng. Sci., 141, 119, 10.1016/j.ces.2015.10.035 Liu, 2014, Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes, J. Membr. Sci., 451, 85, 10.1016/j.memsci.2013.09.029 Zhang, 2012, Unexpected molecular sieving properties of zeolitic imidazolate framework-8, J. Phys. Chem. Lett., 3, 2130, 10.1021/jz300855a Krishna, 2010, In silico screening of zeolite membranes for CO2 capture, J. Membr. Sci., 360, 323, 10.1016/j.memsci.2010.05.032 Ethiraj, 2015, H2S interaction with HKUST-1 and ZIF-8 MOFs: a multitechnique study, Microporous Mesoporous Mater., 207, 90, 10.1016/j.micromeso.2014.12.034 Pan, 2011, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chem. Commun., 47, 2071, 10.1039/c0cc05002d Cravillon, 2009, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework, Chem. Mater., 21, 1410, 10.1021/cm900166h Choi, 2006, MFI zeolite membranes from a- and randomly oriented monolayers, Adsorption, 12, 339, 10.1007/s10450-006-0564-y Nijmeijer, 2001, Preparation and properties of hydrothermally stable γ‐alumina membranes, J. Am. Ceram. Soc., 84, 136, 10.1111/j.1151-2916.2001.tb00620.x Sah, 2004, Hydrophobic modification of γ-alumina membranes with organochlorosilanes, J. Membr. Sci., 243, 125, 10.1016/j.memsci.2004.05.031 Kumagai, 1984, Enhanced densification of boehrmte sol‐gels by α‐alumina seeding, J. Am. Ceram. Soc., 67, 230, 10.1111/j.1151-2916.1984.tb19491.x Liu, 2013, Improvement of hydrothermal stability of zeolitic imidazolate frameworks, Chem. Commun., 49, 9140, 10.1039/c3cc45308a Parida, 2009, Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method, Mater. Chem. Phys., 113, 244, 10.1016/j.matchemphys.2008.07.076 Fillit, 1987, Quantitative XRD analysis of zirconia-toughened alumina ceramics, J. Mater. Sci., 22, 3566, 10.1007/BF01161460 Lee, 2015, Thermosensitive structural changes and adsorption properties of zeolitic imidazolate framework-8 (ZIF-8), J. Phys. Chem. C, 119, 8226, 10.1021/acs.jpcc.5b01519 Bowen, 2005, Colloidal processing and sintering of nanosized transition aluminas, Powder Technol., 157, 100, 10.1016/j.powtec.2005.05.015 Cravillon, 2012, Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy, CrystEngComm, 14, 492, 10.1039/C1CE06002C Shah, 2013, An unconventional rapid synthesis of high performance metal–organic framework membranes, Langmuir, 29, 7896, 10.1021/la4014637 Battisti, 2011, Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: a computer simulation investigation, Microporous Mesoporous Mater., 143, 46, 10.1016/j.micromeso.2011.01.029 De Lange, 1995, Sorption studies of microporous sol-gel modified ceramic membranes, J. Porous Mater., 2, 141, 10.1007/BF00489722 Krishna, 2011, In silico screening of metal–organic frameworks in separation applications, PCCP, 13, 10593, 10.1039/c1cp20282k Liu, 2009, Understanding the adsorption and diffusion of carbon dioxide in zeolitic imidazolate frameworks: a molecular simulation study, J. Phys. Chem. C, 113, 5004, 10.1021/jp809373r Krishna, 2007, Using molecular simulations for screening of zeolites for separation of CO2/CH4 mixtures, Chem. Eng. J., 133, 121, 10.1016/j.cej.2007.02.011 James, 2017, Thermal stability of ZIF-8 membranes for gas separations, J. Membr. Sci., 532, 9, 10.1016/j.memsci.2017.02.017 Gadipelli, 2014, A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake, Energy Environ. Sci., 7, 2232, 10.1039/C4EE01009D Fan, 2012, Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis, J. Mater. Chem., 22, 25272, 10.1039/c2jm35401b Cai, 2014, Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7), J. Am. Chem. Soc., 136, 7961, 10.1021/ja5016298 Zhao, 2014, Phase transitions in zeolitic imidazolate framework 7: the importance of framework flexibility and guest-induced instability, Chem. Mater., 26, 1767, 10.1021/cm500407f Aguado, 2011, Guest-induced gate-opening of a zeolite imidazolate framework, New J. Chem., 35, 546, 10.1039/C0NJ00836B He, 2013, Synthesis of zeolitic imidazolate framework‐7 in a water/ethanol mixture and its ethanol‐induced reversible phase transition, ChemPlusChem, 78, 1222, 10.1002/cplu.201300193 Y. Lin, J. James, H. Zhuang, in: Proceedings of the 7th International Zeolite Membrane Meeting, in Dalian, China, 2016.