Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability
Tài liệu tham khảo
Momirlan, 2002, Current status of hydrogen energy, Renew. Sustain. Energy Rev., 6, 141, 10.1016/S1364-0321(02)00004-7
Sharma, 2015, Hydrogen the future transportation fuel: from production to applications, Renew. Sustain. Energy Rev., 43, 1151, 10.1016/j.rser.2014.11.093
Turner, 2004, Sustainable hydrogen production, Science, 305, 972, 10.1126/science.1103197
Ball, 2009, The future of hydrogen–opportunities and challenges, Int. J. Hydrog. Energy, 34, 615, 10.1016/j.ijhydene.2008.11.014
Ockwig, 2007, Membranes for hydrogen separation, Chem. Rev., 107, 4078, 10.1021/cr0501792
Amelio, 2007, Integrated gasification gas combined cycle plant with membrane reactors: technological and economical analysis, Energy Convers. Manag., 48, 2680, 10.1016/j.enconman.2007.04.023
Bracht, 1997, Water gas shift membrane reactor for CO2 control in IGCC systems: techno-economic feasibility study, Energy Convers. Manag., 38, S159, 10.1016/S0196-8904(96)00263-4
Kaldis, 2004, Energy and capital cost analysis of CO2 capture in coal IGCC processes via gas separation membranes, Fuel Process. Technol., 85, 337, 10.1016/S0378-3820(03)00204-2
Criscuoli, 2001, An economic feasibility study for water gas shift membrane reactor, J. Membr. Sci., 181, 21, 10.1016/S0376-7388(00)00374-4
Lima, 2012, Modeling and Optimization of Membrane Reactors for Carbon Capture in Integrated Gasification Combined Cycle Units, Ind. Eng. Chem. Res., 51, 5480, 10.1021/ie202234u
Lima, 2016, Modeling, Optimization, and Cost Analysis of an IGCC Plant with a Membrane Reactor for Carbon Capture, AIChE J., 62, 1568, 10.1002/aic.15153
Lin, 2001, Microporous and dense inorganic membranes: current status and prospective, Sep. Purif. Technol., 25, 39, 10.1016/S1383-5866(01)00089-2
Kulprathipanja, 2005, Pd and Pd–Cu membranes: inhibition of H2 permeation by H2S, J. Membr. Sci., 254, 49, 10.1016/j.memsci.2004.11.031
Chen, 2010, The effect of H2S on the performance of Pd and Pd/Au composite membrane, J. Membr. Sci., 362, 535, 10.1016/j.memsci.2010.07.002
Braun, 2014, Pd-based binary and ternary alloy membranes: morphological and perm-selective characterization in the presence of H2S, J. Membr. Sci., 450, 299, 10.1016/j.memsci.2013.09.026
Peters, 2012, Hydrogen transport through a selection of thin Pd-alloy membranes: membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures, Catal. Today, 193, 8, 10.1016/j.cattod.2011.12.028
Shekhah, 2011, MOF thin films: existing and future applications, Chem. Soc. Rev., 40, 1081, 10.1039/c0cs00147c
Ma, 2010, Gas storage in porous metal–organic frameworks for clean energy applications, Chem. Commun., 46, 44, 10.1039/B916295J
Furukawa, 2013, The chemistry and applications of metal-organic frameworks, Science, 341, 1230444, 10.1126/science.1230444
Phan, 2010, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res., 43, 58, 10.1021/ar900116g
Park, 2006, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103, 10186, 10.1073/pnas.0602439103
Banerjee, 2008, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science, 319, 939, 10.1126/science.1152516
Wang, 2008, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs, Nature, 453, 207, 10.1038/nature06900
Li, 2010, Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation, J. Membr. Sci., 354, 48, 10.1016/j.memsci.2010.02.074
Li, 2010, Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes, Adv. Mater., 22, 3322, 10.1002/adma.201000857
Li, 2010, Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity, Angew. Chem. Int. Ed., 49, 548, 10.1002/anie.200905645
Aceituno Melgar, 2014, Direct spraying approach for synthesis of ZIF-7 membranes by electrospray deposition, J. Membr. Sci., 459, 190, 10.1016/j.memsci.2014.02.020
Noh, 2015, Synthesis and characterization of ZIF-7 membranes by in situ method, J. Nanosci. Nanotechnol., 15, 575, 10.1166/jnn.2015.8347
Hara, 2014, Diffusive separation of propylene/propane with ZIF-8 membranes, J. Membr. Sci., 450, 215, 10.1016/j.memsci.2013.09.012
Huang, 2014, Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets, J. Mater. Chem. A, 2, 8246, 10.1039/C4TA00299G
Huang, 2013, Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors, Chem. Commun., 49, 10326, 10.1039/c3cc46244g
Kwon, 2015, Improving propylene/propane separation performance of zeolitic-imidazolate framework ZIF-8 membranes, Chem. Eng. Sci., 124, 20, 10.1016/j.ces.2014.06.021
Kwon, 2013, Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth, Chem. Commun., 49, 3854, 10.1039/c3cc41039k
Kwon, 2013, In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation, J. Am. Chem. Soc., 135, 10763, 10.1021/ja403849c
Li, 2013, Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis, Microporous Mesoporous Mater., 168, 15, 10.1016/j.micromeso.2012.09.029
Liu, 2013, Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes, J. Am. Chem. Soc., 135, 17679, 10.1021/ja4080562
Pan, 2011, Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions, Chem. Commun., 47, 10275, 10.1039/c1cc14051e
Pan, 2012, Effective separation of propylene/propane binary mixtures by ZIF-8 membranes, J. Membr. Sci., 390–391, 93, 10.1016/j.memsci.2011.11.024
Xu, 2011, Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel, J. Membr. Sci., 385–386, 187, 10.1016/j.memsci.2011.09.040
Zhang, 2014, New membrane architecture with high performance: zif-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation, Chem. Mater., 26, 1975, 10.1021/cm500269e
Zhu, 2015, Highly hydrogen-permselective zeolitic imidazolate framework ZIF-8 membranes prepared on coarse and macroporous tubes through repeated synthesis, Sep. Purif. Technol., 146, 68, 10.1016/j.seppur.2015.03.020
Huang, 2010, Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker, Angew. Chem. Int. Ed., 49, 4958, 10.1002/anie.201001919
Dong, 2012, Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination, J. Mater. Chem., 22, 19222, 10.1039/c2jm34102f
Huang, 2011, Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity, Angew. Chem. Int. Ed., 50, 4979, 10.1002/anie.201007861
Huang, 2010, Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization, J. Am. Chem. Soc., 132, 15562, 10.1021/ja108774v
Huang, 2012, Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance, Angew. Chem. Int. Ed., 51, 10551, 10.1002/anie.201204621
Huang, 2012, A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation, Chem. Commun., 48, 10981, 10.1039/c2cc35691k
Bux, 2009, Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis, J. Am. Chem. Soc., 131, 16000, 10.1021/ja907359t
Shah, 2013, One step in situ synthesis of supported zeolitic imidazolate framework ZIF-8 membranes: role of sodium formate, Microporous Mesoporous Mater., 165, 63, 10.1016/j.micromeso.2012.07.046
Yao, 2011, Contra-diffusion synthesis of ZIF-8 films on a polymer substrate, Chem. Commun., 47, 2559, 10.1039/c0cc04734a
Bux, 2011, Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation, Chem. Mater., 23, 2262, 10.1021/cm200555s
Yin, 2016, On the Zeolitic Imidazolate Framework-8 (ZIF-8) Membrane for Hydrogen Separation from Simulated Biomass-derived Syngas, Microporous Mesoporous Mater., 233, 70, 10.1016/j.micromeso.2015.10.033
Pan, 2015, Improved ZIF-8 membrane: effect of activation procedure and determination of diffusivities of light hydrocarbons, J. Membr. Sci., 493, 88, 10.1016/j.memsci.2015.06.019
Yu, 2016, ZIF-8 membranes with improved reproducibility fabricated from sputter-coated ZnO/alumina supports, Chem. Eng. Sci., 141, 119, 10.1016/j.ces.2015.10.035
Liu, 2014, Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes, J. Membr. Sci., 451, 85, 10.1016/j.memsci.2013.09.029
Zhang, 2012, Unexpected molecular sieving properties of zeolitic imidazolate framework-8, J. Phys. Chem. Lett., 3, 2130, 10.1021/jz300855a
Krishna, 2010, In silico screening of zeolite membranes for CO2 capture, J. Membr. Sci., 360, 323, 10.1016/j.memsci.2010.05.032
Ethiraj, 2015, H2S interaction with HKUST-1 and ZIF-8 MOFs: a multitechnique study, Microporous Mesoporous Mater., 207, 90, 10.1016/j.micromeso.2014.12.034
Pan, 2011, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chem. Commun., 47, 2071, 10.1039/c0cc05002d
Cravillon, 2009, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework, Chem. Mater., 21, 1410, 10.1021/cm900166h
Choi, 2006, MFI zeolite membranes from a- and randomly oriented monolayers, Adsorption, 12, 339, 10.1007/s10450-006-0564-y
Nijmeijer, 2001, Preparation and properties of hydrothermally stable γ‐alumina membranes, J. Am. Ceram. Soc., 84, 136, 10.1111/j.1151-2916.2001.tb00620.x
Sah, 2004, Hydrophobic modification of γ-alumina membranes with organochlorosilanes, J. Membr. Sci., 243, 125, 10.1016/j.memsci.2004.05.031
Kumagai, 1984, Enhanced densification of boehrmte sol‐gels by α‐alumina seeding, J. Am. Ceram. Soc., 67, 230, 10.1111/j.1151-2916.1984.tb19491.x
Liu, 2013, Improvement of hydrothermal stability of zeolitic imidazolate frameworks, Chem. Commun., 49, 9140, 10.1039/c3cc45308a
Parida, 2009, Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method, Mater. Chem. Phys., 113, 244, 10.1016/j.matchemphys.2008.07.076
Fillit, 1987, Quantitative XRD analysis of zirconia-toughened alumina ceramics, J. Mater. Sci., 22, 3566, 10.1007/BF01161460
Lee, 2015, Thermosensitive structural changes and adsorption properties of zeolitic imidazolate framework-8 (ZIF-8), J. Phys. Chem. C, 119, 8226, 10.1021/acs.jpcc.5b01519
Bowen, 2005, Colloidal processing and sintering of nanosized transition aluminas, Powder Technol., 157, 100, 10.1016/j.powtec.2005.05.015
Cravillon, 2012, Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy, CrystEngComm, 14, 492, 10.1039/C1CE06002C
Shah, 2013, An unconventional rapid synthesis of high performance metal–organic framework membranes, Langmuir, 29, 7896, 10.1021/la4014637
Battisti, 2011, Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: a computer simulation investigation, Microporous Mesoporous Mater., 143, 46, 10.1016/j.micromeso.2011.01.029
De Lange, 1995, Sorption studies of microporous sol-gel modified ceramic membranes, J. Porous Mater., 2, 141, 10.1007/BF00489722
Krishna, 2011, In silico screening of metal–organic frameworks in separation applications, PCCP, 13, 10593, 10.1039/c1cp20282k
Liu, 2009, Understanding the adsorption and diffusion of carbon dioxide in zeolitic imidazolate frameworks: a molecular simulation study, J. Phys. Chem. C, 113, 5004, 10.1021/jp809373r
Krishna, 2007, Using molecular simulations for screening of zeolites for separation of CO2/CH4 mixtures, Chem. Eng. J., 133, 121, 10.1016/j.cej.2007.02.011
James, 2017, Thermal stability of ZIF-8 membranes for gas separations, J. Membr. Sci., 532, 9, 10.1016/j.memsci.2017.02.017
Gadipelli, 2014, A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake, Energy Environ. Sci., 7, 2232, 10.1039/C4EE01009D
Fan, 2012, Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis, J. Mater. Chem., 22, 25272, 10.1039/c2jm35401b
Cai, 2014, Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7), J. Am. Chem. Soc., 136, 7961, 10.1021/ja5016298
Zhao, 2014, Phase transitions in zeolitic imidazolate framework 7: the importance of framework flexibility and guest-induced instability, Chem. Mater., 26, 1767, 10.1021/cm500407f
Aguado, 2011, Guest-induced gate-opening of a zeolite imidazolate framework, New J. Chem., 35, 546, 10.1039/C0NJ00836B
He, 2013, Synthesis of zeolitic imidazolate framework‐7 in a water/ethanol mixture and its ethanol‐induced reversible phase transition, ChemPlusChem, 78, 1222, 10.1002/cplu.201300193
Y. Lin, J. James, H. Zhuang, in: Proceedings of the 7th International Zeolite Membrane Meeting, in Dalian, China, 2016.