Formation of Higher-dimensional Topological Black Holes

Filipe C. Mena1, José Natário2, Paul Tod3
1Departamento de Matemática, Universidade do Minho, Braga, Portugal
2Departamento de Matemática, Instituto Superior Técnico, Lisbon, Portugal
3Mathematical Institute, University of Oxford, Oxford, UK

Tóm tắt

We study higher-dimensional gravitational collapse to topological black holes in two steps. First, we construct some (n + 2)-dimensional collapsing space–times, which include generalised Lemaître–Tolman–Bondi-like solutions, and we prove that these can be matched to static Λ-vacuum exterior space–times. We then investigate the global properties of the matched solutions which, besides black holes, may include the existence of naked singularities and wormholes. Second, we consider as interiors classes of 5-dimensional collapsing solutions built on Riemannian Bianchi IX spatial metrics matched to radiating exteriors given by the Bizoń–Chmaj–Schmidt metric. In some cases, the data at the boundary for the exterior can be chosen to be close to the data for the Schwarzschild solution.

Từ khóa


Tài liệu tham khảo

Akbar M.M.: Classical boundary-value problem in Riemannian quantum gravity and Taub–Bolt-anti-de Sitter geometries. Nucl. Phys. B 663, 215–230 (2003)

Birmingham D.: Topological black holes in anti-de Sitter space. Class. Quantum Grav. 16, 1197–1205 (1999)

Bizoń P., Chmaj T., Schmidt B.G.: Critical behaviour in vacuum gravitational collapse in 4 + 1-dimensions. Phys. Rev. Lett. 95, 071102 (2005)

Bizoń P., Chmaj T., Rostworowski A., Schmidt B.G., Tabor Z.: Vacuum gravitational collapse in nine dimensions. Phys. Rev. D 72, 121502 (2005)

Böhm C.: Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces. Invent. Math. 134, 145 (1998)

Boutaleb-Joutei H.: The general Taub-NUT de Sitter metric as a self-dual Yang-Mills solution of gravity. Phys. Lett. B 90, 181–184 (1980)

Dafermos M., Holzegel G.: On the nonlinear stability of higher dimensional triaxial Bianchi-IX black holes. Adv. Theor. Math. Phys. 10, 503–523 (2006)

Eguchi T., Hanson A.J.: Asymptotically flat self-dual solutions to Euclidean gravity. Phys. Lett. B 74, 249–251 (1978)

Galloway G.J.: A ‘finite infinity’ version of topological censorship. Class. Quantum Grav. 13, 1471–1478 (1996)

Ghosh S.G., Beesham A.: Higher dimensional inhomogeneous dust collapse and cosmic censorship. Phys. Rev. D 64, 124005 (2001)

Gibbons G.W., Hartnoll S.A.: Gravitational instability in higher dimensions. Phys. Rev. D 66, 064024 (2002)

Gibbons G.W., Ida D., Shiromizu T.: Uniqueness and non-uniqueness of static vacuum black holes in higher dimensions. Prog. Theor. Phys. Suppl. 148, 284–290 (2003)

Goswami R., Joshi P.: Cosmic censorship in higher dimensions. Phys. Rev. D 69, sss104002 (2004)

Hellaby C.: A Kruskal-like model with finite density. Class. Quantum Grav. 4, 635–650 (1987)

Holzegel, G.: Stability and decay-rates for the five-dimensional Schwarzschild metric under biaxial perturbations. Preprint, arXiv:0808.3246 (2008)

Lemos J.P.S.: Gravitational collapse to toroidal, cylindrical and planar black holes. Phys. Rev. D 57, 4600–4605 (1998)

Mena F.C., Natário J., Tod P.: Gravitational collapse to toroidal and higher genus asymptotically AdS black holes. Adv. Theor. Math. Phys. 12, 1163–1181 (2008)

Pederson H.: Eguchi–Hanson metrics with a cosmological constant. Class. Quantum Grav. 2, 579–587 (1985)

Smith W.L., Mann R.B.: Formation of topological black holes from gravitational collapse. Phys. Rev. D 56, 4942–4947 (1997)