Formation of Biomedical Coatings with Complex Compositions Using Vacuum Arc Plasma
Tóm tắt
One of the most promising methods for biomedical coating formation is based on the use of vacuum arc plasma sources that allow pure metals to be obtained and plasma-chemical synthesis of complex compounds to be carried out. In this work, the results of synthesis of titanium nitride and titanium carbide on metal substrates using specially developed equipment are presented.
Tài liệu tham khảo
Scheidbach, H., Tannapfel, A., Schmidt, U., Lippert, H., and Köckerling, F., “Influence of titanium coating on the biocompatibility of a heavyweight polypropylene mesh,” Eur. Surg. Res., 36, 313-317 (2004).
Ching, H. A., Choudhury, D., Nine, M. J., and Abu Osman, N. A., “Effects of surface coating on reducing friction and wear of orthopaedic implants,” Sci. Technol. Adv. Mater., 15, 014402 (2014).
Vladescu, A., Cotrut, C. M., Kiss, A., Balaceanu, M., Braic, V., Zamfir, S., and Braic, M., “Corrosion resistance of the TiN, TiAlN and TiN/TiAlN nanostructured hard coatings,” UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 68, No. 4, 57-64 (2006).
Vladescu, A., Cotrut, C., Braic, V., Balaceanu, M., and Braic, M., “Biocompatible thin films deposited by cathodic arc method,” Romanian Reports in Physics, 56, No. 3, 460-465 (2004).
Cheng, Y. and Zheng, Y. F., “Characterization of TiN, TiC and TiCN coatings on Ti–50.6 at.% Ni alloy deposited by PIII and deposition technique,” Surface and Coatings Technology, 201, 4909-4912 (2007).
Bystrov, Yu. A., Vetrov, N. Z., Lisenkov, A. A., and Kostrin, D. K., “Technological capabilities of vacuum arc plasma sources: Plasmochemical synthesis of nitride compounds,” Vakuum in Forschung und Praxis, 26, No. 5, 19-23 (2014).
Hamilton, H. W. and Gorczyca, J., “Low friction arthroplasty at 10 to 20 years: Consequences of plastic wear,” Clinical Orthopaedics and Related Research, 318, 160-166 (1995).
Ratner, B. D., Hoffman, A. S., Schoen, F. J., and Lemons, J. E., Biomaterials Science: An Introduction to Materials in Medicine, Academic Press, San Diego (1996).
Medley, J. B., Chan, F. W., Jan, J., and Bobyn, D., “Comparison of alloys and designs in a hip simulator study of metal on metal implants,” Clinical Orthopaedics and Related Research, 329, S148-S159 (1996).
Bystrov, Yu. A., Lisenkov, A. A., and Vetrov, N. Z., “Plasmachemical synthesis of carbide compounds in metal-containing plasma jet from vacuum arc discharge,” Technical PhysicsLetters, 34, No. 9, 734-736 (2008).
Abramov, I. S., Bystrov, Yu. A., and Lisenkov, A. A., “A Vacuum Arc Device,” RF Patent No. 2058423 (1996).
Barchenko, V. T., Vetrov, N. Z., and Lisenkov, A. A., Technological Vacuum Arc Plasma Sources [in Russian], SPbGETU, St. Petersburg (2013).
Bystrov, Yu. A., Kostrin, D. K., Lisenkov, A. A., and Vetrov, N. Z., “Cathode spots of vacuum arc discharges: Motion control on the working surface,” Vakuum in Forschung und Praxis, 27, No. 2, 22-25 (2015).
Lisenkov, A. A., “Plasma-chemical synthesis of compounds in metal plasma of vacuum arc discharge,” Vakuum. Tekh. Tekhnol., 16, No. 3, 207-214 (2006).
Bystrov, Yu. A., Vetrov, N. Z., and Lisenkov, A. A., “Plasmachemical synthesis of titanium carbide on copper substrates,” Technical Physics Letters, 37, No. 8, 707-709 (2011).