Formation and Magnetic Interaction of Si/MnGe Core/Shell Nanowire Arrays
Tóm tắt
We present the preparation of MnGe coated Si nanowires (NWs) using molecular beam epitaxy. Uniformly dispersed silicon NW surfaces were initially covered by Ge, and then Si/MnGe core/shell NW heterostructures were fabricated by solid phase epitaxial growth. Morphology and the magnetic properties of the Si/MnGe core/shell NWs were investigated. The results of scanning electron microscope and transmission electron microscope revealed that the shell layer of NWs was agglomerated to form clusters, which were mainly comprised of Mn5Ge3 phase. Vibrating magnetometer and X-band ferromagnetic resonance measurements indicate that the Si/MnGe core/shell NWs exhibited a slight shape anisotropy along the geometrical wire axis.
Tài liệu tham khảo
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science. 294(5546), 1488–1495 (2001)
Zutic, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76(2), 323–410 (2004)
Datta, S., Das, B.: Electronic analog of the electrooptic modulator. Appl. Phys. Lett. 56(7), 665–667 (1990)
Sugahara, S., Tanaka, M.: A spin metal-oxide-semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain. Appl. Phys. Lett. 84(13), 2307–2309 (2004)
Jonker, B.T., Kioseoglou, G., Hanbicki, A.T., Li, C.H., Thompson, P.E.: Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nat. Phys. 3(8), 542–546 (2007)
Dash, S.P., Sharma, S., Patel, R.S., de Jong, M.P., Jansen, R.: Electrical creation of spin polarization in silicon at room temperature. Nature. 462(7272), 491–494 (2009)
Lin, Y.C., Chen, Y., Shaios, A., Huang, Y.: Detection of spin polarized carrier in silicon nanowire with single crystal MnSi as magnetic contacts. Nano Lett. 10(6), 2281–2287 (2010)
Liu, E.S., Nah, J., Varahramyan, K.M., Tutuc, E.: Lateral spin injection in germanium nanowires. Nano Lett. 10(9), 3297–3301 (2010)
Zhou, Y., Han, W., Chang, L.T., Xiu, F.X., Wang, M.S., Oehme, M., Fischer, I.A., Schulze, J., Kawakami, R.K., Wang, K.L.: Electrical spin injection and transport in germanium. Phys. Rev. B. 84(12), 125323 (2011)
Tang, J.S., Wang, C.Y., Chang, L.T., Fan, Y.B., Nie, T.X., Chan, M., Jiang, W.J., Chen, Y.T., Yang, H.J., Tuan, H.Y., Chen, L.J., Wang, K.L.: Electrical spin injection and detection in Mn5Ge3/Ge/Mn5Ge3 nanowire transistors. Nano Lett. 13(9), 4036–4043 (2013)
Adhikari, H., Marshall, A.F., Chidsey, C.E.D., McIntyre, P.C.: Germanium nanowire epitaxy: shape and orientation control. Nano Lett. 6(2), 318–323 (2006)
Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., van Wees, B.J.: Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B. 62(8), R4790–R4793 (2000)
Fert, A., Jaffres, H.: Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B. 64(18), 184420 (2001)
Rashba, E.I.: Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B. 62(24), R16267–R16270 (2000)
Dash, S.P., Sharma, S., Le Breton, J.C., Peiro, J., Jaffres, H., George, J.M., Lemaitre, A., Jansen, R.: Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface. Phys. Rev. B. 84(5), 054410 (2011)
Picozzi, S., Continenza, A., Freeman, A.J.: First-principles characterization of ferromagnetic Mn5Ge3 for spintronic applications. Phys. Rev. B. 70(23), 235205 (2004)
Tang, J.S., Wang, C.Y., Hung, M.H., Jiang, X.W., Chang, L.T., He, L., Liu, P.H., Yang, H.J., Tuan, H.Y., Chen, L.J., Wang, K.L.: Ferromagnetic Germanide in Ge nanowire transistors for spintronics application. ACS Nano. 6(6), 5710–5717 (2012)
Lungu, G.A., Stoflea, L.E., Tanase, L.C., Bucur, I.C., Radutoiu, N., Vasiliu, F., Mercioniu, I., Kuncser, V., Teodorescu, C.M.: Room temperature ferromagnetic Mn:Ge(001). Materials. 7(1), 106–129 (2014)
Siddiqui, S., Galatage, R., Zhao, W., Muthinti, G.R., Fronheiser, J., Srinivasan, P., Triyoso, D.H., Sporer, R., Jagannathan, H., Haran, B., Knorr, A.: High quality interfacial layer formation for Si0.75Ge0.25 (100) high-k metal gate stack. Microelectron Eng. 223, 111219 (2020)
De Padova, P., Mariot, J.M., Favre, L., Berbezier, I., Olivieri, B., Perfetti, P., Quaresima, C., Ottaviani, C., Taleb-Ibrahimi, A., Le Fevre, P., Bertran, F., Heckmann, O., Richter, M.C., Ndiaye, W., D'Orazio, F., Lucari, F., Cacho, C.M., Hricovini, K.: Mn5Ge3 films grown on Ge(111)-c(2x8). Surf. Sci. 605(5–6), 638–643 (2011)
Shukla, A.K., Kruger, P., Dhaka, R.S., Sayago, D.I., Horn, K., Barman, S.R.: Understanding the 2p core-level spectra of manganese: photoelectron spectroscopy experiments and Anderson impurity model calculations. Phys. Rev. B. 75(23), 235419 (2007)
Sangaletti, L., Drera, G., Magnano, E., Bondino, F., Cepek, C., Sepe, A., Goldoni, A.: Atomic approach to core-level spectroscopy of delocalized systems: case of ferromagnetic metallic Mn5Ge3. Phys. Rev. B. 81(8), 085204 (2010)
Yasasun, B.T., Onel, A.C., Aykac, I.G., Gulgun, M.A., Arslan, L.C.: Effect of Ge layer thickness on the formation of Mn5Ge3 thin film on Ge/Si (111). J. Magn. Magn. Mater. 473, 348–354 (2019)
Jain, A., Jamet, M., Barski, A., Devillers, T., Yu, I.S., Porret, C., Bayle-Guillemaud, P., Favre-Nicolin, V., Gambarelli, S., Maurel, V., Desfonds, G., Jacquot, J.F., Tardif, S.: Structure and magnetism of Ge3Mn5 clusters. J. Appl. Phys. 109(1), 013911 (2011)
Tosun, O., Salehi-Fashami, M., Balasubramanian, B., Skomski, R., Sellmyer, D.J., Hadjipanayis, G.C.: Structure and magnetism of Mn5Ge3 nanoparticles. Nanomaterials-Basel. 8(4), (2018)
Yamada, N., Maeda, K., Usami, Y., Ohoyama, T.: Magnetic-properties of intermetallic compound Mn11ge8. J. Phys. Soc. Jpn. 55(11), 3721–3724 (1986)
Gutierrez-Naranjo, D., Holguin-Momaca, J.T., Solis-Canto, O.O., Gupta, P., Poddar, P., Magana, F.E., Olive-Mendez, S.F.: Polycrystalline MnGe2 thin films on InAs(001) substrates. Thin Solid Films. 657, 38–41 (2018)
Tawara, Y., Sato, K.: On the magnetic anisotropy of single crystal of Mn5Ge3. J. Phys. Soc. Jpn. 18, 773–777 (1963)
Bedanta, S., Kleemann, W.: Supermagnetism. J. Phys. D. Appl. Phys. 42(1), 013001 (2009)
Al Saei, J., El-Hilo, M., Chantrell, R.W.: Distributions of dipolar interaction fields in nano-granular magnetic systems. J. Appl. Phys. 110(2), 023902 (2011)
Arshad, M.S., Sturm, S., Zavasnik, J., Espejo, A.P., Escrig, J., Komelj, M., McGuiness, P.J., Kobe, S., Rozman, K.Z.: Effect of magnetocrystalline anisotropy on the magnetic properties of electrodeposited Co-Pt nanowires. J. Nanopart. Res. 16(11), 2688 (2014)
Skomski, R., Zeng, H., Zheng, M., Sellmyer, D.J.: Magnetic localization in transition-metal nanowires. Phys. Rev. B. 62(6), 3900–3904 (2000)
Dung, D.D., Odkhuu, D., Vinh, L.T., Hong, S.C., Cho, S.: Strain-induced modification in the magnetic properties of Mn5Ge3 thin films. J. Appl. Phys. 114(7), 073906 (2013)
Truong, A., Watanabe, A.O., Sekiguchi, T., Mortemousque, P.A., Sato, T., Ando, K., Itoh, K.M.: Evidence of a perpendicular magnetocrystalline anisotropy in a Mn5Ge3 epitaxial thin film revealed by ferromagnetic resonance. Phys. Rev. B. 90(22), 224415 (2014)