Formalizing the semantics of sea ice

Springer Science and Business Media LLC - Tập 8 - Trang 51-62 - 2014
Ruth E. Duerr1, Jamie P. McCusker2, Mark A. Parsons3, SiriJodha Singh Khalsa1, Peter L. Pulsifer1, Cassidy Thompson1, Rui Yan2, Deborah L. McGuinness2, Peter Fox2
1National Snow and Ice Data Center, University of Colorado at Boulder, Boulder, USA
2Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, USA
3Institute for Data Exploration and Applications, Rensselaer Polytechnic Institute, Troy, USA

Tóm tắt

We have initiated a project aimed at enhancing interdisciplinary understanding and usability of polar data by diverse communities. We have produced computer- and human-understandable models of sea ice that can be used to support the interoperability of a wide range of sea ice data. This has the potential to improve scientific predictive analyses and increase usage of the data by scientists, modelers, and forecasters as well as residents of communities that rely on sea ice. We have developed a family of ontologies, leveraging existing best in class models, including one module describing physical characteristics of sea ice, another describing sea ice charts, and a third modeling “egg codes” - an internationally accepted standard for symbolically representing sea ice within geographic regions. We used a semantic Web methodology to rapidly gather and refine requirements, design and iterate over the ontologies, and to evaluate the ontologies with respect to the use cases. We gathered requirements from a wide range of potential stakeholders reflecting the interests of operational ice centers, ice researchers, and indigenous people. We introduce the driving use case and provide an overview of the resulting open source ontologies. We also introduce some key technical considerations including the prominent role of provenance, terms of use, and credit in the model. We describe how the ontologies are being employed and highlight their compatibility with a wide range of existing standards previously developed by many of the stakeholder communities.

Tài liệu tham khảo

ACIA (2005) Arctic Climate Impacts Assessment. Cambridge University Press, pp 1042 Benedict JL, McGuinness DL, Fox PA (2006) A Semantic web-based methodology for building conceptual models of scientific information. In American Geophysical Union, Fall Meeting, San Francisco, Ca., December, 2007. Eos Trans. AGU 88(52), Fall Meet. Suppl., Abstract IN53A-0950 Berrueta D, Polo L (2008) Measurement units ontology http://idi.fundacionctic.org/muo/muo-vocab.html Bushuyev AV (2011) Sea Ice Nomenclature, draft Version 1.0, http://www.aari.nw.ru/gdsidb/docs/wmo/nomenclature/WMO_Nomenclature_draft_version1-0.pdf (accessed 2011) Canadian Ice Service (2009) Canadian Ice Service Arctic Regional Sea Ice Charts in SIGRID-3 Format. National Snow and Ice Data Center, Boulder. doi:10.7265/N51V5BW9 Clemente-Colón P (2010) Impacts of an ice-diminishing arctic on naval and maritime operations. In 2010 I.E. International Geoscience and Remote Sensing Symposium. Honolulu, Hi. TH4.L08.3 Dumontier M, Baker CJO, Baran J, Callahan A, Chepelev L, Cruz-Toledo J, Del Rio NR et al (2014) The Semanticscience Integrated Ontology (SIO) for Biomedical Research and Knowledge Discovery. J Biomed Semant 5(1):14. doi:10.1186/2041-1480-5-14 Ford J, Gough B, Laidler G, MacDonald J, Qrunnnut J, Irngaut C (2009) Sea ice, climate change, and community vulnerability in northern Foxe Basin, Canada. Clim Res 38:138–154 Fox P, Raskin R, Bermudez L, Burrows H, Ramachandran R, Di L, Wilson B (2007) Datatype and service ontology. Federation of Earth Science Information Partners Wiki. http://wiki.esipfed.org/images/3/37/Semweb-001-datatype-service.pdf. Accessed 31 March, 2014 Fox P, McGuinness DL, Cinquini L, West P, Garcia J, Benedict JL, Middleton D (2009) Ontology-supported scientific data frameworks: The virtual solar-terrestrial observatory experience. In Computers and Geosciences - Elsevier. Volume 35, Issue 4 Interagency Arctic Research Policy Committee (IARPC) (2013) Arctic Research Plan: FY2013-2017, Office of Science and Technology Policy, http://www.whitehouse.gov/sites/default/files/microsites/ostp/2013_arctic_research_plan.pdf Lawrence DM, Slater AG, Tomas RA, Holland MM, Deser C (2008) Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys Res Lett 35(11) Lebo T, Sahoo S, McGuinness DL (2013) PROV-O: The PROV Ontology. World Wide Web Consortium (W3C) Recommendation. April 30, 2013. Available from http://www.w3.org/TR/prov-o/ Maali F, Erickson J, Archer P (2014) Data Catalog Vocabulary (DCAT). W3C Recommendation McGuinness DL, Fox P, Cinquini L, West P, Garcia J, Benedict JL, Middleton D (2007) The virtual solar-terrestrial observatory: A deployed semantic web application case study for scientific research. In the Proceedings of the Nineteenth Conference on Innovative Applications of Artificial Intelligence (IAAI-07). Vancouver, British Columbia, Canada, July 22–26, 2007 Meier WN, Gallaher D, Campbell GG (2013) New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryosphere Discuss 7(1):35–53 National Research Council (2012) Seasonal-to-decadal predictions of arctic sea ice: challenges and strategies. The National Academies Press, ISBN 9780309265263, http://www.nap.edu/openbook.php?record_id=13515 Overpeck JT, Sturm M, Francis JA, Perovich DK, Serreze MC, Benner R, Carmack EC, Chapin FS, Gerlach SC, Hamilton LC, Hinzman LD, Holland M, Huntington HP, Key JR, Lloyd AH, MacDonald GM, McFadden J, Noone D, Prowse TD, Schlosser P, Vörösmarty C (2005) Arctic system on trajectory to new, seasonally ice-free state. Eos Trans Am Geophys Union 86(34):309–313 Raskin RG, Pan MJ (2005) Knowledge representation in the semantic web for Earth and environmental terminology (SWEET). Comput Geosci 31(9):1119–1125 Rubel-Shuart B (2000) Glossary of Terms for the EOSDIS Core System (ECS) Project, Technical Paper 152-TP-003-003. http://edhs1.gsfc.nasa.gov/waisdata/docsw/pdf/tp1520303.pdf SPARQL Query Language for RDF, Seaborne A, Prud’hommeaux E, Editors, W3C Recommendation, 15 January 2008, http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ . Latest version available at http://www.w3.org/TR/rdf-sparql-query/ Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea ice cover. Science 315:1533–1536 Star SL, Griesemer JR (1989) Institutional Ecology, ‘Translations’ and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–39. Soc Stud Sci 19(3):387–420. doi:10.1177/030631289019003001 Stirling I, Parkinson CL (2006) Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus maritimus) in the Canadian Arctic. Arctic 59:261–275 Stroeve J, Serreze M, Drobot S, Gearheard S, Holland M, Maslanik J, Meier W, Scambos T (2008) Arctic Sea Ice Extent Plummets in 2007, Eos Trans. AGU 89(2):13–14. doi:10.1029/2008EO020001 Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: Cryosphere. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36, L07502. doi:10.1029/2009GL037820 World Meteorological Organization (WMO) (1970) WMO sea-ice nomenclature. WMO/OMM/BMO No 259.TP.145, Geneva