Mô hình hóa và xác minh chính thức một phương pháp thương lượng đa tác nhân cho quản lý hoạt động hàng không

Springer Science and Business Media LLC - Tập 7 Số 4 - Trang 279-298 - 2021
Soufiane Bouarfa1,2, Reyhan Aydoğan3,4, Alexei Sharpanskykh5
1Abu Dhabi Polytechnic, Al Ain Campus, United Arab Emirates
2Delft Aviation, Delft, The Netherlands
3Department of Computer Science, Özyeğin University, Istanbul, Turkey
4Interactive Intelligence, Delft University of Technology, Delft, The Netherlands
5Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

Tóm tắt

Tóm tắtBài báo này đề xuất và đánh giá một chiến lược quản lý gián đoạn hàng không mới sử dụng mô hình hóa hệ thống đa tác nhân, mô phỏng và xác minh. Chiến lược mới này dựa trên một giao thức thương lượng đa tác nhân và được so sánh với ba chiến lược hàng không dựa trên các thực tiễn trong ngành đã được thiết lập. Ứng dụng liên quan đến Quản lý Hoạt động Hàng không mà chức năng cốt lõi là quản lý gián đoạn. Để đánh giá chiến lược mới, một mô hình hệ thống đa tác nhân dựa trên quy tắc của AOC và các quy trình phi hành đoàn đã được phát triển. Mô hình này được sử dụng để đánh giá tác động của việc thương lượng đa tác nhân đối với hiệu suất của hãng hàng không trong bối cảnh một kịch bản gián đoạn thách thức. Đối với kịch bản cụ thể được xem xét, chiến lược thương lượng đa tác nhân vượt trội hơn các chiến lược đã được thiết lập khi các tác nhân tham gia thương lượng là những chuyên gia. Một đóng góp quan trọng khác là bài báo trình bày một ngữ nghĩa dựa trên logic được sử dụng cho mô hình hóa chính thức và phân tích quy trình làm việc của AOC.

Từ khóa


Tài liệu tham khảo

Bouarfa S, Blom HAP, Curran R, Everdij MHC (2015) Agent-based modelling and simulation of emergent behavior in air transportation. Springer, Berlin

Blom, H.A.P., Bouarfa, S. (2016). Resilience. In Complexity Science in Air Traffic Management. A. Cook and D. Rivas (Eds.), Routledge, England.

Marsa-Maestrea I, Klein M, Jonker CM, Aydoğan R (2014) From problems to protocols: towards a negotiation handbook. Decis Support Syst Electron Commer 60:39–54

Baarslag T, Gerding E, AydoğanR, Schraefel MC (2015) Optimal negotiation decision functions in time-sensitive domains. In: IEEE/WIC/ACM International joint conferences on web intelligence (WI) and intelligent agent technologies (IAT), pp 190–197.

Baarslag T, Hendrikx MJC, Hindriks KV, Jonker CM (2016) A survey of opponent modeling techniques in automated negotiation. In: AAMAS2016: 2016 international conference on autonomous agents and multi-agent systems, Singapore, pp 575–576

Castro AJM (2013) A distributed approach to integrated and dynamic disruption management in airline operations control. PhD thesis, University of Porto.

Chen Y, Peng Y, Finin T, Labrou Y, Cost R, Chu B, Yao J, Sun R (1999) A negotiation-based multi-agent system for supply chain management. In: Proceedings of Agents'99 workshop agent- based decision-support for managing internet-enabled supply chain, pp 15–23.

Nguyen D, Jennings N (2005) Managing commitments in multiple concurrent negotiations. Electron Commer Res Appl 4:362–376

Wang G, Wong T, Wang X (2013) An ontology-based approach to organize multi-agent assisted supply chain negotiations. Comput Ind Eng 65:2–15

Cui-hong Hu (2011) Automated negotiation model of supply chain management based on multi-agent. MSIE 2011:178–180

Rady HA, El-Shorouk (2011) Multi-agent system for negotiation in a collaborative supply chain management. Int J Video Image Process Netw Secur IJVIPNS-IJENS 11(5)

Xue X, Lu J, Wang Y, Shen Q (2007) Towards an agent-based negotiation platform for cooperative decision-making in construction supply chain. KES international symposium on agent and multi-agent systems: technologies and applications, 416–425

Aydoğan R, Festen D, Hindriks KV, Jonker CM (2017) Alternating offers protocols for multilateral negotiation. Modern approaches to agent-based complex automated negotiation. Springer, Cham, pp 153–167

Klein M, Faratin P, Sayama H, Bar-Yam Y (2003) Protocols for negotiating complex contracts. IEEE Intell Syst 18(6):32–38

Aydoğan R, Hindriks KV, Jonker CM (2014) Multilateral mediated negotiation protocols with feedback. Novel insights in agent-based complex automated negotiation. Springer, Tokyo, pp 43–59

Sanchez-Anguix V, Aydoğan R, Julian V, Jonker CM (2014) Unanimously acceptable agreements for negotiation teams in unpredictable domains. Electron Commer Res Appl 13(4):243–265

Ågotnes T, Bulling N (2014) Formal methods for coordinating multi-agent systems (Dagstuhl Seminar 14332). Dagstuhl Rep 4(8):21–44

Bordini RH, Fisher M, Visser W, Wooldridge M (2006) Verifying multi-agent programs by model checking. Auton Agent Multi Agent Syst 12(2):239–256

Peters PF (2009) Airborne on time. In: Cwerner S, Kesselring S, Urry J (eds) Aeromobilities. Routledge, London, pp 159–176

Grandeau S (1995) The processes of airline operational control. Msc. thesis, Massachusetts Institute of Technology, Boston.

Clausen J, Larsen A, Larsen J, Rezanova NJ (2010) Disruption management in the airline industry—concepts, models and methods. Comput Oper Res 37(5):809–821

Kohl N, Larsen A, Larsen J, Ross A, Tiourine S (2007) Airline disruption management—perspectives, experiences, and outlook. J Air Transp Manag 13(3):149–162

Clarke MDD (1998) Irregular airline operations: a review of the state-of-the-practice in airline operations control centers. J Air Transp Manag 4:67–76

Barnhart C (2009) The global airline industry, chapter irregular operations. Wiley, West Sussex, pp 253–274

Pujet N, Feron E (1998) Modelling an airline operations control. In: Presented at the 2nd USA/Europe Air Traffic Management R&D Seminar. http://atmseminar.org/seminarContent/seminar2/papers/p_034_APMMA.pdf. Accessed 25 Jan 2021

Castro AJM, Oliveira E (2011) A new concept for disruption management in air-line operations control. Proc Instit Mech Eng Part G J Aerosp Eng 225(3):269–290

Bruce PJ (2011) Understanding decision-making processes in airline operations control. Ashgate Publishing Company, Farnham

Bouarfa S, Blom HAP, Curran R (2016) Agent-based modelling and simulation of coordination by airline operations control. IEEE Trans Emerg Top Comput. https://doi.org/10.1109/TETC.2015.2439633

Castro AJM (2008) Centros de controlo op-eracional: Organizacao e ferramentas: monograph for post-graduation. Instituto Superior de Educao e Ciłncias, Lisbon

Machado N (2010) Impact of the organizational structure on operations management. Msc thesis, University of Porto.

Feigh KM (2008) Design of cognitive work support systems for airline operations. PhD thesis, Georgia Institute of Technology.

Bruce PJ (2011) Decision-making in airline operations: the importance of identifying decision considerations. Intern J Aviat Manag 1:89–104

Visser W, Aydoğan R, Hindriks K, Jonker C (2012) A framework for qualitative multi-criteria preferences. In: Proceedings of the forth international conference on agents and artificial intelligence (ICAART 2012), Portugal, pp 243–248

Nikolic I, Ghorbani A (2011) A method for developing agent-based models of socio-technical systems. 2011 international conference on networking, sensing and control, 44–49

Sharpanskykh A, Treur J (2010) A temporal trace language for formal modelling and analysis of agent systems. Specification and verification of multi-agent systems. Springer, Boston, pp 317–352

LEADSTO software (2019). http://www.cs.vu.nl/~wai/TTL/. Accessed 25 Jan 2021

Bosse T, van der Jonker CM, Meij L, Treur J (2007) A language and environment for analysis of dynamics by simulation. Int J Artif Intell Tools 16(03):435–464

van den Broek EL, Jonker CM, Sharpanskykh A, Treur J, Yolum P (2006) Formal modelling and analysis of organizations. In: Boissier O, Padget J, Dignum V, Lindermann G, Matson E, Ossowski S, Sichman JS, Salceda JV (eds) Coordination, organizations, institutions, and norms in multi-agent systems, vol 3913. Springer, Heidelberg, pp 18–34

Sharpanskykh A, Treur J (2006) Modeling of agent behavior using behavioral specifications. Vrije Universiteit Amsterdam. The Netherlands. Technical Report 06-02ASRAI

Manzano M (1996) Extensions of first order logic, vol 19. Cambridge University Press

Bosse T, Jonker CM, Van der Meij L, Sharpanskykh A, Treur J (2009) Specification and verification of dynamics in agent models. Int J Coop Inf Syst 18(01):167–193

Institut du transport aerien (2000) Costs of air transport delay in Europe. https://www.eurocontrol.int/sites/default/files/content/documents/single-sky/pru/publications/other/cost-of-air-transport-delay-in-eu-ita.pdf. Accessed 25 Jan 2021

Bouarfa S, Muller J, Blom H (2018) Evaluation of a multi-agent system approach to airline disruption management. J Air Transp Manag 71:108–118

Castro AJM (2013) A distributed approach to integrated and dynamic disruption management in airline operations control. PhD thesis. University of Porto.

Müller J (2015) Evaluating agent-based automation in airline operations control. MSc Thesis. Delft University of Technology.

Bouarfa S (2015) Agent-based modelling and simulation of safety and resilience in air transportation. PhD thesis, Delft University of Technology, ISBN/EAN 978-94-6259-924-6, Ipskamp Drukers Publisher.

Neapolitan RE (2004) Learning bayesian networks, vol 38. Pearson Prentice Hall, Upper Saddle River

Kwiatkowska M, Norman G, Parker D (2017) Probabilistic model checking: advances and applications. In: Drechsler R (ed) Formal system verification. Springer, Berlin, pp 73–121