Forensic analysis of biological fluid stains on substrates by spectroscopic approaches and chemometrics: A review
Tài liệu tham khảo
Bremmer, 2012, Forensic quest for age determination of bloodstains, Forensic Sci. Int., 216, 1, 10.1016/j.forsciint.2011.07.027
Weber, 2020, Crime clock – analytical studies for approximating time since deposition of bloodstains, Forensic Chem., 19, 10.1016/j.forc.2020.100248
Das, 2020, Analytical approaches for bloodstain aging by vibrational spectroscopy: current trends and future perspectives, Microchem. J., 158, 10.1016/j.microc.2020.105278
Casey, 2020, Raman spectroscopy for forensic semen identification: method validation vs. environmental interferences, Vib. Spectrosc., 109, 10.1016/j.vibspec.2020.103065
Rosenblatt, 2019, Raman spectroscopy for forensic bloodstain identification: method validation vs. environmental interferences, Forensic Chem., 16, 10.1016/j.forc.2019.100175
Vyas, 2020, A universal test for the forensic identification of all main body fluids including urine, Forensic Chem., 20, 10.1016/j.forc.2020.100247
Feine, 2016, Combination of prostate-specific antigen detection and micro-Raman spectroscopy for confirmatory semen detection, Forensic Sci. Int., 270, 241, 10.1016/j.forsciint.2016.10.012
Zapata, 2015, Emerging spectrometric techniques for the forensic analysis of body fluids, TrAC, Trends Anal. Chem., 64, 53, 10.1016/j.trac.2014.08.011
McLaughlin, 2013, Circumventing substrate interference in the Raman spectroscopic identification of blood stains, Forensic Sci. Int., 231, 157, 10.1016/j.forsciint.2013.04.033
Sikirzhytskaya, 2013, Forensic identification of blood in the presence of contaminations using Raman microspectroscopy coupled with advanced statistics: effect of sand, dust, and soil, J. Forensic Sci., 58, 1141, 10.1111/1556-4029.12248
Bovens, 2019, Chemometrics in forensic chemistry — Part I: implications to the forensic workflow, Forensic Sci. Int., 301, 82, 10.1016/j.forsciint.2019.05.030
Rinnan, 2009, Review of the most common pre-processing techniques for near-infrared spectra, TrAC, Trends Anal. Chem., 28, 1201, 10.1016/j.trac.2009.07.007
Christopoulos, 1972, Isolation and identification of morphine from postmorteum tissues, J. Chromatogr., A, 65, 507, 10.1016/S0021-9673(00)84997-3
Forrest, 1972, Phenothiazines metabolism and analytical detection, J. Forensic Sci., 17, 592, 10.1520/JFS10149J
Web of Science, 2022
Cavalcanti, 2019, Application of atomic force microscopy in the analysis of time since deposition (TSD) of red blood cells in bloodstains: a forensic analysis, Forensic Sci. Int., 301, 254, 10.1016/j.forsciint.2019.05.048
Fujita, 2005, Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors, Forensic Sci. Int., 152, 39, 10.1016/j.forsciint.2005.02.029
Thanakiatkrai, 2013, Age estimation of bloodstains using smartphones and digital image analysis, Forensic Sci. Int., 233, 288, 10.1016/j.forsciint.2013.09.027
Champod, 2013, Overview and meaning of identification/individualization, 303
Siegel, 2013
Mistek-Morabito, 2021, Discrimination of menstrual and peripheral blood traces using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy and chemometrics for forensic purposes, Anal. Bioanal. Chem., 413, 2513, 10.1007/s00216-021-03206-w
Mistek-Morabito, 2020, Discrimination between human and animal blood by attenuated total reflection Fourier transform-infrared spectroscopy, Commun. Chem., 3, 1, 10.1038/s42004-020-00424-8
Virkler, 2010, Raman spectroscopic signature of blood and its potential application to forensic body fluid identification, Anal. Bioanal. Chem., 396, 525, 10.1007/s00216-009-3207-9
Sikirzhytski, 2012, Advanced statistical analysis of Raman spectroscopic data for the identification of body fluid traces: semen and blood mixtures, Forensic Sci. Int., 222, 259, 10.1016/j.forsciint.2012.07.002
Boyd, 2013, Highly sensitive detection of blood by surface enhanced Raman scattering, J. Forensic Sci., 58, 753, 10.1111/1556-4029.12120
Sikirzhytskaya, 2014, Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood, J. Biophot., 7, 59, 10.1002/jbio.201200191
Doty, 2016, A Raman “spectroscopic clock” for bloodstain age determination: the first week after deposition, Anal. Bioanal. Chem., 408, 3993, 10.1007/s00216-016-9486-z
Mistek, 2016, Race differentiation by Raman spectroscopy of a bloodstain for forensic purposes, Anal. Chem., 88, 7453, 10.1021/acs.analchem.6b01173
Muro, 2016, Forensic body fluid identification and differentiation by Raman spectroscopy, Forensic Chem., 1, 31, 10.1016/j.forc.2016.06.003
Doty, 2017, Predicting the time of the crime: bloodstain aging estimation for up to two years, Forensic Chem., 5, 1, 10.1016/j.forc.2017.05.002
Schlagetter, 2017, The use of Raman spectroscopy for the identification of forensically relevant body fluid stains, Spectroscopy, 32, 19
Sikirzhytskaya, 2017, Determining gender by Raman spectroscopy of a bloodstain, Anal. Chem., 89, 1486, 10.1021/acs.analchem.6b02986
Fikiet, 2019, Raman spectroscopic method for semen identification: Azoospermia, Talanta, 194, 385, 10.1016/j.talanta.2018.10.034
Gautam, 2020, Feature selection and rapid characterization of bloodstains on different substrates, Appl. Spectrosc., 74, 1238, 10.1177/0003702820937776
Menżyk, 2020, Toward a novel framework for bloodstains dating by Raman spectroscopy: how to avoid sample photodamage and subsampling errors, Talanta, 209, 10.1016/j.talanta.2019.120565
Nichols, 2022, Raman spectroscopy for forensic identification of body fluid traces: method validation for potential false negatives caused by blood-affecting diseases, Am. J. Anal. Chem., 13, 1, 10.4236/ajac.2022.131001
Weber, 2021, Post deposition aging of bloodstains probed by steady-state fluorescence spectroscopy, J. Photochem. Photobiol., B, 221, 10.1016/j.jphotobiol.2021.112251
Zapata, 2020, A practical beginner's guide to Raman microscopy, Appl. Spectrosc. Rev., 56, 439, 10.1080/05704928.2020.1797761
Wójtowicz, 2021, Probing menstrual bloodstain aging with fluorescence spectroscopy, Spectrochim. Acta, Part A, 248, 10.1016/j.saa.2020.119172
Botonjic-Sehic, 2009, Forensic application of near-infrared spectroscopy, Aging Bloodstains, Spectrosc., 24, 42
Virkler, 2009, Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis, Anal. Chem., 81, 7773, 10.1021/ac901350a
Agudelo, 2016, Ages at a crime scene: simultaneous estimation of the time since deposition and age of its originator, Anal. Chem., 88, 6479, 10.1021/acs.analchem.6b01169
Quinn, 2017, The differentiation of menstrual from venous blood and other body fluids on various substrates using ATR FT‐IR spectroscopy, J. Forensic Sci., 62, 197, 10.1111/1556-4029.13250
Takamura, 2017, Spectral mining for discriminating blood origins in the presence of substrate interference via attenuated total reflection fourier transform infrared spectroscopy: postmortem or antemortem blood?, Anal. Chem., 89, 10.1021/acs.analchem.7b01756
Takamura, 2018, Soft and Robust identification of body fluid using fourier transform infrared spectroscopy and chemometric Strategies for forensic analysis, Sci. Rep., 8, 10.1038/s41598-018-26873-9
Takamura, 2019, Comprehensive modeling of bloodstain aging by multivariate Raman spectral resolution with kinetics, Commun. Chem., 2, 10.1038/s42004-019-0217-1
Kumar, 2020, Bloodstain age estimation through infrared spectroscopy and Chemometric models, Sci. Justice, 60, 538, 10.1016/j.scijus.2020.07.004
Sharma, 2020, Forensic discrimination of menstrual blood and peripheral blood using attenuated total reflectance (ATR)-Fourier transform infrared (FT-IR) spectroscopy and chemometrics, J. Leg. Med., 134, 63, 10.1007/s00414-019-02134-w
Sharma, 2020, Detection and discrimination of seminal fluid using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy combined with chemometrics, J. Leg. Med., 134, 411, 10.1007/s00414-019-02222-x
Sharma, 2020, Detection of vaginal fluid stains on common substrates via ATR FT-IR spectroscopy, J. Leg. Med., 134, 1591, 10.1007/s00414-020-02333-w
Wang, 2022, Identification of human and non-human bloodstains on rough carriers based on ATR-FTIR and chemometrics, Microchem. J., 180, 10.1016/j.microc.2022.107620
Sharma, 2021, Detection of bloodstains using attenuated total reflectance-Fourier transform infrared spectroscopy supported with PCA and PCA–LDA, Med. Sci. Law, 61, 292, 10.1177/00258024211010926
Malegori, 2020, Identification of invisible biological traces in forensic evidences by hyperspectral NIR imaging combined with chemometrics, Talanta, 215, 10.1016/j.talanta.2020.120911
Manis, 2022, Non-destructive age estimation of biological fluid stains: an integrated analytical strategy based on near-infrared hyperspectral imaging and multivariate regression, Talanta, 245, 10.1016/j.talanta.2022.123472
Cano-Trujillo, 2023, Differentiation of blood and environmental interfering stains on substrates by Chemometrics-Assisted ATR FTIR spectroscopy, Spectrochim. Acta Mol. Biomol. Spectrosc., 292, 10.1016/j.saa.2023.122409
Edelman, 2012, Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy, Forensic Sci. Int., 220, 239, 10.1016/j.forsciint.2012.03.009
Fujihara, 2017, Blood identification and discrimination between human and nonhuman blood using portable Raman spectroscopy, J. Leg. Med., 131, 319, 10.1007/s00414-016-1396-2
Hanson, 2010, A blue spectral shift of the hemoglobin Soret band correlates with the age (time since deposition) of dried bloodstains, PLoS One, 5, 10.1371/journal.pone.0012830
Hanson, 2011, Validation of the hemoglobin (Hb) hypsochromic shift assay for determination of the time since deposition (TSD) of dried bloodstains, Forensic Sci. Int. : For. Genet., 3, e307
Li, 2013, The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis, Sci. Justice, 53, 270, 10.1016/j.scijus.2013.04.004
Wang, 2019, Identification and determination of the bloodstains dry time in the crime scenes using laser-induced breakdown spectroscopy, IEEE Photon. J., 11, 1
Elkins, 2011, Rapid presumptive fingerprinting of body fluids and materials by ATR FT-IR spectroscopy, J. Forensic Sci., 56, 1580, 10.1111/j.1556-4029.2011.01870.x
Silva, 2017, Detecting semen stains on fabrics using near infrared hyperspectral images and multivariate models, TrAC, Trends Anal. Chem., 95, 23, 10.1016/j.trac.2017.07.026
Achetib, 2019, Estimating the time of deposition of semen traces using fluorescence protein–lipid oxidation signatures, Anal. Chem., 91, 3204, 10.1021/acs.analchem.8b05625
Muro, 2017, Race differentiation based on Raman spectroscopy of semen traces for forensic purposes, Anal. Chem., 89, 4344, 10.1021/acs.analchem.7b00106
Virkler, 2009, Raman spectroscopic signature of semen and its potential application to forensic body fluid identification, Forensic Sci. Int., 193, 56, 10.1016/j.forsciint.2009.09.005
McLaughlin, 2015, In situ identification of semen stains on common substrates via Raman spectroscopy, J. Forensic Sci., 60, 595, 10.1111/1556-4029.12708
Zapata, 2016, Differentiation of body fluid stains on fabrics using external reflection fourier transform infrared spectroscopy (FT-IR) and chemometrics, Appl. Spectrosc., 70, 654, 10.1177/0003702816631303
Gregório, 2017, Analysis of human bodily fluids on superabsorbent pads by ATR-FTIR, Talanta, 162, 634, 10.1016/j.talanta.2016.10.061
Sikirzhytskaya, 2011, Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification, Forensic Sci. Int., 216, 44, 10.1016/j.forsciint.2011.08.015
D'Elia, 2015, Spectroscopic trends for the determination of illicit drugs in oral fluid, Appl. Spectrosc. Rev., 50, 775, 10.1080/05704928.2015.1075206
Virkler, 2010, Forensic body fluid identification: the Raman spectroscopic signature of saliva, Analyst, 135, 512, 10.1039/B919393F
Muro, 2016, Sex determination based on Raman spectroscopy of saliva traces for forensic purposes, Anal. Chem., 88, 12489, 10.1021/acs.analchem.6b03988
Al-Hetlani, 2020, Differentiating smokers and nonsmokers based on Raman spectroscopy of oral fluid and advanced statistics for forensic applications, J. Biophot., 13
Cano-Trujillo, 2023, Source determination of human and animal oral fluid stains on porous substrates by chemometrics-assisted ATR FTIR spectroscopy: a preliminary study, Microchem. J., 190, 10.1016/j.microc.2023.108648
Sikirzhytski, 2012, Multidimensional Raman spectroscopic signature of sweat and its potential application to forensic body fluid identification, Anal. Chim. Acta, 718, 78, 10.1016/j.aca.2011.12.059