Forensic analysis of biological fluid stains on substrates by spectroscopic approaches and chemometrics: A review

Analytica Chimica Acta - Tập 1282 - Trang 341841 - 2023
Cristina Cano-Trujillo1,2, Carmen García-Ruiz1,2, Fernando E. Ortega-Ojeda1,2,3, Francesco Romolo4, Gemma Montalvo1,2
1Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871, Alcalá de Henares, Madrid, Spain
2Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain
3Universidad de Alcalá, Departamento de Ciencias de la Computación, Ctra. Madrid-Barcelona km 33,6, 28871, Alcalá de Henares, Madrid, Spain
4Università degli Studi di Bergamo, Dipartimento di Giurisprudenza, Via Moroni 255, 24127, Bergamo, Italy

Tài liệu tham khảo

Bremmer, 2012, Forensic quest for age determination of bloodstains, Forensic Sci. Int., 216, 1, 10.1016/j.forsciint.2011.07.027 Weber, 2020, Crime clock – analytical studies for approximating time since deposition of bloodstains, Forensic Chem., 19, 10.1016/j.forc.2020.100248 Das, 2020, Analytical approaches for bloodstain aging by vibrational spectroscopy: current trends and future perspectives, Microchem. J., 158, 10.1016/j.microc.2020.105278 Casey, 2020, Raman spectroscopy for forensic semen identification: method validation vs. environmental interferences, Vib. Spectrosc., 109, 10.1016/j.vibspec.2020.103065 Rosenblatt, 2019, Raman spectroscopy for forensic bloodstain identification: method validation vs. environmental interferences, Forensic Chem., 16, 10.1016/j.forc.2019.100175 Vyas, 2020, A universal test for the forensic identification of all main body fluids including urine, Forensic Chem., 20, 10.1016/j.forc.2020.100247 Feine, 2016, Combination of prostate-specific antigen detection and micro-Raman spectroscopy for confirmatory semen detection, Forensic Sci. Int., 270, 241, 10.1016/j.forsciint.2016.10.012 Zapata, 2015, Emerging spectrometric techniques for the forensic analysis of body fluids, TrAC, Trends Anal. Chem., 64, 53, 10.1016/j.trac.2014.08.011 McLaughlin, 2013, Circumventing substrate interference in the Raman spectroscopic identification of blood stains, Forensic Sci. Int., 231, 157, 10.1016/j.forsciint.2013.04.033 Sikirzhytskaya, 2013, Forensic identification of blood in the presence of contaminations using Raman microspectroscopy coupled with advanced statistics: effect of sand, dust, and soil, J. Forensic Sci., 58, 1141, 10.1111/1556-4029.12248 Bovens, 2019, Chemometrics in forensic chemistry — Part I: implications to the forensic workflow, Forensic Sci. Int., 301, 82, 10.1016/j.forsciint.2019.05.030 Rinnan, 2009, Review of the most common pre-processing techniques for near-infrared spectra, TrAC, Trends Anal. Chem., 28, 1201, 10.1016/j.trac.2009.07.007 Christopoulos, 1972, Isolation and identification of morphine from postmorteum tissues, J. Chromatogr., A, 65, 507, 10.1016/S0021-9673(00)84997-3 Forrest, 1972, Phenothiazines metabolism and analytical detection, J. Forensic Sci., 17, 592, 10.1520/JFS10149J Web of Science, 2022 Cavalcanti, 2019, Application of atomic force microscopy in the analysis of time since deposition (TSD) of red blood cells in bloodstains: a forensic analysis, Forensic Sci. Int., 301, 254, 10.1016/j.forsciint.2019.05.048 Fujita, 2005, Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors, Forensic Sci. Int., 152, 39, 10.1016/j.forsciint.2005.02.029 Thanakiatkrai, 2013, Age estimation of bloodstains using smartphones and digital image analysis, Forensic Sci. Int., 233, 288, 10.1016/j.forsciint.2013.09.027 Champod, 2013, Overview and meaning of identification/individualization, 303 Siegel, 2013 Mistek-Morabito, 2021, Discrimination of menstrual and peripheral blood traces using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy and chemometrics for forensic purposes, Anal. Bioanal. Chem., 413, 2513, 10.1007/s00216-021-03206-w Mistek-Morabito, 2020, Discrimination between human and animal blood by attenuated total reflection Fourier transform-infrared spectroscopy, Commun. Chem., 3, 1, 10.1038/s42004-020-00424-8 Virkler, 2010, Raman spectroscopic signature of blood and its potential application to forensic body fluid identification, Anal. Bioanal. Chem., 396, 525, 10.1007/s00216-009-3207-9 Sikirzhytski, 2012, Advanced statistical analysis of Raman spectroscopic data for the identification of body fluid traces: semen and blood mixtures, Forensic Sci. Int., 222, 259, 10.1016/j.forsciint.2012.07.002 Boyd, 2013, Highly sensitive detection of blood by surface enhanced Raman scattering, J. Forensic Sci., 58, 753, 10.1111/1556-4029.12120 Sikirzhytskaya, 2014, Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood, J. Biophot., 7, 59, 10.1002/jbio.201200191 Doty, 2016, A Raman “spectroscopic clock” for bloodstain age determination: the first week after deposition, Anal. Bioanal. Chem., 408, 3993, 10.1007/s00216-016-9486-z Mistek, 2016, Race differentiation by Raman spectroscopy of a bloodstain for forensic purposes, Anal. Chem., 88, 7453, 10.1021/acs.analchem.6b01173 Muro, 2016, Forensic body fluid identification and differentiation by Raman spectroscopy, Forensic Chem., 1, 31, 10.1016/j.forc.2016.06.003 Doty, 2017, Predicting the time of the crime: bloodstain aging estimation for up to two years, Forensic Chem., 5, 1, 10.1016/j.forc.2017.05.002 Schlagetter, 2017, The use of Raman spectroscopy for the identification of forensically relevant body fluid stains, Spectroscopy, 32, 19 Sikirzhytskaya, 2017, Determining gender by Raman spectroscopy of a bloodstain, Anal. Chem., 89, 1486, 10.1021/acs.analchem.6b02986 Fikiet, 2019, Raman spectroscopic method for semen identification: Azoospermia, Talanta, 194, 385, 10.1016/j.talanta.2018.10.034 Gautam, 2020, Feature selection and rapid characterization of bloodstains on different substrates, Appl. Spectrosc., 74, 1238, 10.1177/0003702820937776 Menżyk, 2020, Toward a novel framework for bloodstains dating by Raman spectroscopy: how to avoid sample photodamage and subsampling errors, Talanta, 209, 10.1016/j.talanta.2019.120565 Nichols, 2022, Raman spectroscopy for forensic identification of body fluid traces: method validation for potential false negatives caused by blood-affecting diseases, Am. J. Anal. Chem., 13, 1, 10.4236/ajac.2022.131001 Weber, 2021, Post deposition aging of bloodstains probed by steady-state fluorescence spectroscopy, J. Photochem. Photobiol., B, 221, 10.1016/j.jphotobiol.2021.112251 Zapata, 2020, A practical beginner's guide to Raman microscopy, Appl. Spectrosc. Rev., 56, 439, 10.1080/05704928.2020.1797761 Wójtowicz, 2021, Probing menstrual bloodstain aging with fluorescence spectroscopy, Spectrochim. Acta, Part A, 248, 10.1016/j.saa.2020.119172 Botonjic-Sehic, 2009, Forensic application of near-infrared spectroscopy, Aging Bloodstains, Spectrosc., 24, 42 Virkler, 2009, Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis, Anal. Chem., 81, 7773, 10.1021/ac901350a Agudelo, 2016, Ages at a crime scene: simultaneous estimation of the time since deposition and age of its originator, Anal. Chem., 88, 6479, 10.1021/acs.analchem.6b01169 Quinn, 2017, The differentiation of menstrual from venous blood and other body fluids on various substrates using ATR FT‐IR spectroscopy, J. Forensic Sci., 62, 197, 10.1111/1556-4029.13250 Takamura, 2017, Spectral mining for discriminating blood origins in the presence of substrate interference via attenuated total reflection fourier transform infrared spectroscopy: postmortem or antemortem blood?, Anal. Chem., 89, 10.1021/acs.analchem.7b01756 Takamura, 2018, Soft and Robust identification of body fluid using fourier transform infrared spectroscopy and chemometric Strategies for forensic analysis, Sci. Rep., 8, 10.1038/s41598-018-26873-9 Takamura, 2019, Comprehensive modeling of bloodstain aging by multivariate Raman spectral resolution with kinetics, Commun. Chem., 2, 10.1038/s42004-019-0217-1 Kumar, 2020, Bloodstain age estimation through infrared spectroscopy and Chemometric models, Sci. Justice, 60, 538, 10.1016/j.scijus.2020.07.004 Sharma, 2020, Forensic discrimination of menstrual blood and peripheral blood using attenuated total reflectance (ATR)-Fourier transform infrared (FT-IR) spectroscopy and chemometrics, J. Leg. Med., 134, 63, 10.1007/s00414-019-02134-w Sharma, 2020, Detection and discrimination of seminal fluid using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy combined with chemometrics, J. Leg. Med., 134, 411, 10.1007/s00414-019-02222-x Sharma, 2020, Detection of vaginal fluid stains on common substrates via ATR FT-IR spectroscopy, J. Leg. Med., 134, 1591, 10.1007/s00414-020-02333-w Wang, 2022, Identification of human and non-human bloodstains on rough carriers based on ATR-FTIR and chemometrics, Microchem. J., 180, 10.1016/j.microc.2022.107620 Sharma, 2021, Detection of bloodstains using attenuated total reflectance-Fourier transform infrared spectroscopy supported with PCA and PCA–LDA, Med. Sci. Law, 61, 292, 10.1177/00258024211010926 Malegori, 2020, Identification of invisible biological traces in forensic evidences by hyperspectral NIR imaging combined with chemometrics, Talanta, 215, 10.1016/j.talanta.2020.120911 Manis, 2022, Non-destructive age estimation of biological fluid stains: an integrated analytical strategy based on near-infrared hyperspectral imaging and multivariate regression, Talanta, 245, 10.1016/j.talanta.2022.123472 Cano-Trujillo, 2023, Differentiation of blood and environmental interfering stains on substrates by Chemometrics-Assisted ATR FTIR spectroscopy, Spectrochim. Acta Mol. Biomol. Spectrosc., 292, 10.1016/j.saa.2023.122409 Edelman, 2012, Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy, Forensic Sci. Int., 220, 239, 10.1016/j.forsciint.2012.03.009 Fujihara, 2017, Blood identification and discrimination between human and nonhuman blood using portable Raman spectroscopy, J. Leg. Med., 131, 319, 10.1007/s00414-016-1396-2 Hanson, 2010, A blue spectral shift of the hemoglobin Soret band correlates with the age (time since deposition) of dried bloodstains, PLoS One, 5, 10.1371/journal.pone.0012830 Hanson, 2011, Validation of the hemoglobin (Hb) hypsochromic shift assay for determination of the time since deposition (TSD) of dried bloodstains, Forensic Sci. Int. : For. Genet., 3, e307 Li, 2013, The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis, Sci. Justice, 53, 270, 10.1016/j.scijus.2013.04.004 Wang, 2019, Identification and determination of the bloodstains dry time in the crime scenes using laser-induced breakdown spectroscopy, IEEE Photon. J., 11, 1 Elkins, 2011, Rapid presumptive fingerprinting of body fluids and materials by ATR FT-IR spectroscopy, J. Forensic Sci., 56, 1580, 10.1111/j.1556-4029.2011.01870.x Silva, 2017, Detecting semen stains on fabrics using near infrared hyperspectral images and multivariate models, TrAC, Trends Anal. Chem., 95, 23, 10.1016/j.trac.2017.07.026 Achetib, 2019, Estimating the time of deposition of semen traces using fluorescence protein–lipid oxidation signatures, Anal. Chem., 91, 3204, 10.1021/acs.analchem.8b05625 Muro, 2017, Race differentiation based on Raman spectroscopy of semen traces for forensic purposes, Anal. Chem., 89, 4344, 10.1021/acs.analchem.7b00106 Virkler, 2009, Raman spectroscopic signature of semen and its potential application to forensic body fluid identification, Forensic Sci. Int., 193, 56, 10.1016/j.forsciint.2009.09.005 McLaughlin, 2015, In situ identification of semen stains on common substrates via Raman spectroscopy, J. Forensic Sci., 60, 595, 10.1111/1556-4029.12708 Zapata, 2016, Differentiation of body fluid stains on fabrics using external reflection fourier transform infrared spectroscopy (FT-IR) and chemometrics, Appl. Spectrosc., 70, 654, 10.1177/0003702816631303 Gregório, 2017, Analysis of human bodily fluids on superabsorbent pads by ATR-FTIR, Talanta, 162, 634, 10.1016/j.talanta.2016.10.061 Sikirzhytskaya, 2011, Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification, Forensic Sci. Int., 216, 44, 10.1016/j.forsciint.2011.08.015 D'Elia, 2015, Spectroscopic trends for the determination of illicit drugs in oral fluid, Appl. Spectrosc. Rev., 50, 775, 10.1080/05704928.2015.1075206 Virkler, 2010, Forensic body fluid identification: the Raman spectroscopic signature of saliva, Analyst, 135, 512, 10.1039/B919393F Muro, 2016, Sex determination based on Raman spectroscopy of saliva traces for forensic purposes, Anal. Chem., 88, 12489, 10.1021/acs.analchem.6b03988 Al-Hetlani, 2020, Differentiating smokers and nonsmokers based on Raman spectroscopy of oral fluid and advanced statistics for forensic applications, J. Biophot., 13 Cano-Trujillo, 2023, Source determination of human and animal oral fluid stains on porous substrates by chemometrics-assisted ATR FTIR spectroscopy: a preliminary study, Microchem. J., 190, 10.1016/j.microc.2023.108648 Sikirzhytski, 2012, Multidimensional Raman spectroscopic signature of sweat and its potential application to forensic body fluid identification, Anal. Chim. Acta, 718, 78, 10.1016/j.aca.2011.12.059