Forecasting the moisture dynamics of a landfill capping system comprising different geosynthetics: A NARX neural network approach
Tài liệu tham khảo
Adamowski, 2011, A wavelet neural network conjunction model for groundwater level forecasting, J. Hydrol., 407, 28, 10.1016/j.jhydrol.2011.06.013
Albright, 2006, Field performance of three compacted clay landfill covers, Vadose Zone J., 5, 1157, 10.2136/vzj2005.0134
2003
Baah-Frempong, 2018, Stability analysis and design charts for a sandy soil slope supporting an embedded strip footing, Int. J. Geo Eng., 9, 1, 10.1186/s40703-018-0082-2
Bergmeir, 2012, vol. 191, 192
Bergmeir, 2014, On the usefulness of cross-validation for directional forecast evaluation, Comput. Stat. Data Anal., 76, 132, 10.1016/j.csda.2014.02.001
BS 1377 PART 6 - Consolidation and Permeability Tests in Hydraulic Cells and with Pore Pressure Measurement.
Bussière, 2003, The behaviour of inclined covers used as oxygen barriers, Can. Geotech. J., 40, 512, 10.1139/t03-001
Chao, 2021, Comparative study of hybrid artificial intelligence approaches for predicting peak shear strength along soil-geocomposite drainage layer interfaces, Int. J. Geosynth. Ground Eng., 7, 1, 10.1007/s40891-021-00299-2
Choo, 2000, Water flow through cover soils using modelling and experimental methods, J. Geotech. Geoenviron. Eng., 126, 324, 10.1061/(ASCE)1090-0241(2000)126:4(324)
Dassanayake, 2020, Probabilistic stability evaluation for wildlife-damaged earth dams: a Bayesian approach, Georisk, 14, 41
Dassanayake, 2022, Flow dependent constriction-size distribution in gap-graded soils: a statistical inference, Géotech. Lett., 12, 46, 10.1680/jgele.21.00039
Dassanayake, 2020, A statistical inference of hydraulic shear and clogging in internally unstable soils, Géotech. Lett., 10, 67, 10.1680/jgele.19.00082
Dassanayake, 2021
Di Nunno, 2020, Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network, Environ. Res., 190, 10.1016/j.envres.2020.110062
Di Nunno, 2021, Prediction of spring flows using non-linear autoregressive exogenous (NARX) neural network models, Environ. Monit. Assess., 193, 1, 10.1007/s10661-021-09135-6
2012, Geotextiles and geotextile-related products, Determination of water permeability characteristics normal to the plane, under load
Gildin, 2011, Closed-loop reservoir management: do we need complex models?
Guzman, 2017, The use of NARX neural networks to forecast daily groundwater levels, Water Resour. Manag., 31, 1591, 10.1007/s11269-017-1598-5
Henken-Mellies, 2004, Long-term observation of alternative landfill capping systems – field tests on a landfill in Bavaria, Land Contam. Reclamat., 12, 10.2462/09670513.636
Jones, 2003, Stability of landfill lining systems: literature Review, Environ. Agency Res. Dev. Project
Khalil, 2015, Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models, Hydrogeol. J., 23, 121, 10.1007/s10040-014-1204-3
Koerner, 2000, Leachate in landfills: the stability issues, Geotext. Geomembranes, 18, 293, 10.1016/S0266-1144(99)00034-5
Krause, 2005, Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5, 89, 10.5194/adgeo-5-89-2005
Leontaritis, 1985, Input-output parametric models for non-linear systems part I: deterministic non-linear systems, Int. J. Control, 41, 303, 10.1080/0020718508961129
MathWorks, 2020
Menberg, 2013, Subsurface urban heat islands in German cities, Sci. Total Environ., 442, 123, 10.1016/j.scitotenv.2012.10.043
Mousa, 2021, Genesis of transitional behaviour in geomaterials: a review and gap analysis, Geomechanics Geoengin., 16, 298, 10.1080/17486025.2019.1670871
Murphy, 2009, 192
Nanda, 2016, A wavelet-based non-linear autoregressive with exogenous inputs (WNARX) dynamic neural network model for real-time flood forecasting using satellite-based rainfall products, J. Hydrol., 539, 57, 10.1016/j.jhydrol.2016.05.014
Narejo, 2013, Finite element analysis experiments on landfill cover drainage with geosynthetic drainage layer, Geotext. Geomembranes, 38, 68, 10.1016/j.geotexmem.2013.04.001
Nyhan, 2005, A seven-year water balance study of an evapotranspiration landfill cover, Vadose Zone J., 4, 466, 10.2136/vzj2003.0159
Plocoste, 2014, Evidence of the effect of an urban heat island on air quality near a landfill, Urban Clim., 10, 745, 10.1016/j.uclim.2014.03.007
Raja, 2021, Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique, Geotext. Geomembranes, 49, 1280, 10.1016/j.geotexmem.2021.04.007
Samarasinghe, 2016
Senevirathne, 2021, Effects of pavement texture and colour on Urban Heat Islands: an experimental study in tropical climate, Urban Clim., 40, 10.1016/j.uclim.2021.101024
Shukla, 2008, Overall slope stability of prestressed geosynthetic-reinforced embankments on soft ground, Geosynth. Int., 15, 165, 10.1680/gein.2008.15.2.165
Shumway, 2000, vol. 3
Van Doren, 2008, Determining identifiable parameterizations for large-scale physical models in reservoir engineering, IFAC Proc. Vol., 41, 11421, 10.3182/20080706-5-KR-1001.01935
Wanas, 1998, On the optimal number of hidden nodes in a neural network, vol. 2, 918
Wunsch, 2018, Forecasting groundwater levels using non-linear autoregressive networks with exogenous input (NARX), J. Hydrol., 567, 743, 10.1016/j.jhydrol.2018.01.045
Yu, 2018
Zamara, 2012
Zamara, 2014, Landfill side slope lining system performance: a comparison of field measurements and numerical modelling analyses, Geotext. Geomembranes, 42, 224, 10.1016/j.geotexmem.2014.03.003
Zhu, 2020, Interpreting electrochemical impedance spectra with physical models of mixed-conducting protonic ceramic electrochemical cells, vol. 40, 2571