Forecasting realised volatility from search volume and overnight sentiment: Evidence from China
Tài liệu tham khảo
Aboody, 2018, Overnight returns and firm-specific investor sentiment, J. Financ. Quant. Anal., 53, 485, 10.1017/S0022109017000989
Andersen, 1998, Answering the skeptics: yes, standard volatility models do provide accurate forecasts, Int. Econ. Rev., 39, 885, 10.2307/2527343
Audrino, 2020, The impact of sentiment and attention measures on stock market volatility, Int. J. Forecast., 36, 334, 10.1016/j.ijforecast.2019.05.010
Baker, 2006, Investor sentiment and the cross-section of stock returns, J. Financ., 61, 1645, 10.1111/j.1540-6261.2006.00885.x
Bauwens, L., Hafner, C., & Laurent, S., 2012. Handbook of Volatility Models and Their Applications. John Wiley & Sons, Ltd.
Bekaert, 2014, The VIX, the variance premium and stock market volatility, J. Econ., 183, 181, 10.1016/j.jeconom.2014.05.008
Bekierman, 2018, Forecasting realized variance measures using timevarying coefficient models, Int. J. Forecast., 34, 276, 10.1016/j.ijforecast.2017.12.005
Berkman, 2012, Paying attention: overnight returns and the hidden cost of buying at the open, J. Financ. Quant. Anal., 47, 715, 10.1017/S0022109012000270
Bollerslev, 2009, Expected stock returns and variance risk premia, Rev. Financ. Stud., 22, 4463, 10.1093/rfs/hhp008
Choi, 2012, Predicting the present with Google trends, Econ. Rec., 88, 2, 10.1111/j.1475-4932.2012.00809.x
Christiansen, 2012, A comprehensive look at financial volatility prediction by economic variables, J. Appl. Econ., 27, 956, 10.1002/jae.2298
Clark, 2007, Approximately normal tests for equal predictive accuracy in nested models, J. Econ., 138, 291, 10.1016/j.jeconom.2006.05.023
Corsi, 2009, A simple approximate long-memory model of realized volatility, J. Financ. Econ., 7, 174
Da, 2011, In search of attention, J. Financ., 66, 1461, 10.1111/j.1540-6261.2011.01679.x
Da, 2015, The sum of all FEARS: investor sentiment and asset prices, Rev. Financ. Stud., 28, 1, 10.1093/rfs/hhu072
Degiannakis, 2017, Forecasting oil price realized volatility using information channels from other asset classes, J. Int. Money Financ., 76, 28, 10.1016/j.jimonfin.2017.05.006
Diebold, 1995, Comparing predictive accuracy, J. Bus. Econ. Stat., 13, 253
Dietzel, 2014, Sentiment-based commercial real estate forecasting with Google search volume data, J. Prop. Invest. Financ., 32, 540, 10.1108/JPIF-01-2014-0004
Dimpfl, 2016, Can internet search queries help to predict stock market volatility?, Eur. Financ. Manag., 22, 171, 10.1111/eufm.12058
Engle, 2013, Stock market volatility and macroeconomic fundamentals, Rev. Econ. Stat., 95, 776, 10.1162/REST_a_00300
Fang, 2020, Predicting the long-term stock market volatility: a GARCH-MIDAS model with variable selection, J. Empir. Financ., 58, 36, 10.1016/j.jempfin.2020.05.007
Fernandes, 2014, Modeling and predicting the CBOE market volatility index, J. Bank. Financ., 40, 1, 10.1016/j.jbankfin.2013.11.004
Hansen, 2011, The model confidenceset, Econometrica, 79, 453, 10.3982/ECTA5771
Hribar, 2012, Investor sentiment and analysts' earnings forecast errors, Manag. Sci., 58, 293, 10.1287/mnsc.1110.1356
Inoue, 2017, Rolling window selection for out-of-sample forecasting with time-varying parameters, J. Econ., 196, 5, 10.1016/j.jeconom.2016.03.006
Koopman, 2005, Forecasting daily variability of the S&P100 stock index using historical, realised and implied volatility measurements, J. Empir. Financ., 12, 445, 10.1016/j.jempfin.2004.04.009
Li, 2022, Forecasting crude oil volatility with uncertainty indicators: new evidence, Energy Econ., 108, 10.1016/j.eneco.2022.105936
Li, 2020, The role of the IDEMV in predicting European stock market volatility during the COVID-19 pandemic, Financ. Res. Lett., 36, 10.1016/j.frl.2020.101749
Li, 2021, Comparing search-engine and social-media attentions in finance research: evidence from cryptocurrencies, Int. Rev. Econ. Financ., 75, 723, 10.1016/j.iref.2021.05.003
Liang, 2021, Global equity market volatilities forecasting: a comparison of leverage effects, jumps, and overnight information, Int. Rev. Financ. Anal., 75, 10.1016/j.irfa.2021.101750
Liang, 2022, Climate policy uncertainty and world renewable energy index volatility forecasting, Technol. Forecast. Soc. Change, 182, 10.1016/j.techfore.2022.121810
Liu, 2015, Economic policy uncertainty and stock market volatility, Financ. Res. Lett., 15, 99, 10.1016/j.frl.2015.08.009
Ma, 2017, Forecasting the realizedvolatility of the oil futures market: a regime switching approach, Energy Econ., 67, 136, 10.1016/j.eneco.2017.08.004
Nguyen, 2020, Internet search intensity, liquidity and returns in emerging markets, Res. Int. Bus. Financ., 52, 10.1016/j.ribaf.2019.101166
Patton, 2011, Volatility forecast comparison using imperfect volatility proxies, J. Econ., 160, 246, 10.1016/j.jeconom.2010.03.034
Paye, 2012, ‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables, J. Financ. Econ., 106, 527, 10.1016/j.jfineco.2012.06.005
Pesaran, 1992, A simple nonparametric test of predictive performance, J. Bus. Econ. Stat., 10, 461
Rapach, 2010, Out-of-sample equity premium prediction: combination forecasts and links to the real economy, Rev. Financ. Stud., 23, 821, 10.1093/rfs/hhp063
Rossi, 2012, Out-of-sample forecast tests robust to the choice of window size, J. Bus. Econ. Stat., 30, 432, 10.1080/07350015.2012.693850
Tang, 2020, The role of oil futures intraday information on predicting US stock market volatility, J. Manag. Sci. Eng., 6, 64
Tseng, 2012, The impact of overnight returns on realized volatility, Appl. Financ. Econ., 22, 357, 10.1080/09603107.2011.613760
Wang, 2020, Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: vix vs epu?, Int. Rev. Financ. Anal., 72, 10.1016/j.irfa.2020.101596
Wang, 2016, Forecasting realized volatility in a changing world: a dynamic model averaging approach, J. Bank. Financ., 64, 136, 10.1016/j.jbankfin.2015.12.010
Wang, 2018, Oil and the short-term predictability of stock return volatility, J. Empir. Financ., 47, 90, 10.1016/j.jempfin.2018.03.002
Wen, 2016, Forecasting the volatility of crude oil futures using HAR-type models with structural breaks, Energy Econ., 59, 400, 10.1016/j.eneco.2016.07.014
West, 1996, Asymptotic inference about predictive ability, Econometrica, 64, 106, 10.2307/2171956
Yao, 2019, A novel cluster HAR-type model for forecasting realized volatility, Int. J. Forecast., 35, 1318, 10.1016/j.ijforecast.2019.04.017
Yu, 2012, Investors’ limited concentration and equity return–an empirical study using Baidu index as indicator for concentration, J. Financ. Res., 8, 152
Zhang, 2019, Out-of-sample volatilityprediction: a new mixed-frequency approach, J. Forecast., 38, 669, 10.1002/for.2590
Zhang, 2019, Forecasting oil price volatility: forecast combination versus shrinkage method, Energy Econ., 80, 423, 10.1016/j.eneco.2019.01.010
Zhang, 2020, Forecasting global equity market volatilities, Int. J. Forecast., 36, 1454, 10.1016/j.ijforecast.2020.02.007
Zhou, Y.L., Han, R.J., Xu, Q., Jiang, Q.J., & Zhang, W.K., 2018. Long short-term memory networks for CSI300 volatility prediction with baidu search volume. Concurrency & Computation Practice & Experience.