Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Biau, O., & D’Elia, A. (2010). Euro area GDP forecasting using large survey datasets: A random forest approach. Euroindicators working papers.
Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier systems. MCS 2000. Lecture notes in computer science (Vol. 1857, pp. 1–15).
Emsia, E., & Coskuner, C. (2016). Economic growth prediction using optimized support vector machines. Computational Economics, 48(3), 453–462.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. New York: Springer.
Inoue, A., & Kilian, L. (2008). How useful is bagging in forecasting economic time series? A case study of U.S. consumer price inflation. Journal of the American Statistical Association, 103(482), 511–522.
Jung, J.-K., Patnam, M., & Ter-Martirosyan, A. (2018). An algorithmic crystal ball: Forecasts-based on machine learning. IMF Working Papers. Washington, D.C.: International Monetary Fund.
Medeiros, M. C., Vasconcelos, G. F. R., Veiga, Á., & Zilberman, E. (2019). Forecasting inflation in a data-rich environment: The benefits of machine learning methods. Journal of Business & Economic Statistics,. https://doi.org/10.1080/07350015.2019.1637745.
Molinaro, A. M., Simon, R., & Pfeiffer, R. M. (2005). Prediction error estimation: A comparison of resampling methods. Bioinformatics, 21(15), 3301–3307.
Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives, 31(2), 87–106.
Plakandaras, V., Gupta, R., Gogas, P., & Papadimitriou, T. (2015). Forecasting the U.S. real house price index. Economic Modelling, 45, 259–267.
Probst, P., Wright, M. N., & Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3), e1301.
Richardson, A., Mulder, T., & Vehbi, T. (2018). Nowcasting New Zealand GDP using machine learning algorithms. CAMA Working Paper 47/2018. The Australian National University.
Sandri, M., & Zuccolotto, P. (2008). A bias correction algorithm for the Gini variable importance measure in classification trees. Journal of Computational and Graphical Statistics, 17(3), 611–628.
Tashman, L. (2000). Out-of-sample tests of forecasting accuracy: An analysis and review. International Journal of Forecasting, 16(4), 437–450.
Tiffin, A. (2016). Seeing in the dark: A machine-learning approach to nowcasting in Lebanon. IMF Working Papers. International Monetary Fund.