Forecasting long-term energy demand and reductions in GHG emissions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Afsharzade N, Papzan A, Ashjaee M. et al. Renewable energy development in rural areas of Iran. (2016). Renewable and Sustainable Energy Reviews, 65, 743–755. https://doi.org/10.1016/j.rser.2016.07.042
Ahmadi, M. H., Jashnani, H., Chau, K. -W., Kumar, R., & Rosen, M. A. (2019). Carbon dioxide emissions prediction of five Middle Eastern countries using artificial neural networks, Energy Resources, Part A: Recovery, Utilization, and Environmental Effects
Aizad, T., Shahid, M., Bhatti, A. A., Saleem, M., & Anandarajah, G. (2018). Energy security and renewable energy policy analysis of Pakistan. Renewable and Sustainable Energy Reviews, 84, 155–169.
Ameyaw, B., & Yao, L. (2018). Sectoral energy demand forecasting under an assumption-free data-driven technique. Sustainability, 10(7), 2348.
Amirnekooei, K., Ardehali, M. M., & Sadri, A. (2012). Integrated resource planning for Iran: Development of reference energy system, forecast, and long-term energy-environment plan. Energy, 46(1), 374–385. https://doi.org/10.1016/j.energy.2012.08.013
Aryanpur, V., Atabaki, M. S., Marzband, M., Siano, P., & Ghayoumi, K. (2019). An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector. Renewable and Sustainable Energy Reviews, 112, 58–74. https://doi.org/10.1016/j.rser.2019.05.047
Azam, A., Rafiq, M., Shafique, M., Zhang, H., & Yuan, J. (2021). Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: A multi-variate panel data analysis. Energy, 219, 119592. https://doi.org/10.1016/j.energy.2020.119592
Bahrami, M. and Abbaszadeh, P. (2016). Development a scenario-based model for Iran׳s energy future. Renewable and Sustainable Energy Reviews, 62, 963–970. https://doi.org/10.1016/j.rser.2016.03.053
Balyk, O., Andersen, K. S., Dockweiler, S., Gargiulo, M., Karlsson, K., Næraa, R., Petrović, S., Tattini, J., Termansen, L. B., Venturini, G. TIMES-DK: Technology-rich multi-sectoral optimisation model of the Danish energy system. Energy Strategy Reviews 23 13–22
Cai, W., Wang, C., Chen, J., Wang, K., Zhang, Y., & Lu, X. (2008). Comparison of CO2 emissions scenarios and mitigations opportunities in China’s five sector in 2020. Energy Policy, 36(3), 1181–1194. https://doi.org/10.1016/j.enpol.2007.11.030
Energy Information Administration (EIA). (2018). Country analysis brief. Washington, DC, USA: Energy Information Administration.
Farangi, M., Asl Soleimani, E., Zahedifar, M., Amiri, O., & Poursafar, J. (2020). The environmental and economic analysis of grid-connected photovoltaic power systems with silicon solar panels, in accord with the new energy policy in Iran. Energy, 202, 117771. https://doi.org/10.1016/j.energy.2020.117771
Global Energy Statistical Yearbook- 2019 Edition. (2019). Enerdata. Available at: https://www.enerdata.net/about-us/company-news/energy-statistical-yearbook-updated.html
Golabi, Z. (2011). The role of energy sector in sustainable development in Iran. MS Thesis, Massachusetts Institute of technology
Gorgani Firouzjah, K. (2018). Assessment of small-scale PV systems in Iran: Regions priority, potentials and financial feasibility. Renewable and Sustainable Energy Reviews, 94, 267–274. https://doi.org/10.1016/j.rser.2018.06.002
Gyamfi, B. A., Ozturk, I., Bein, M. A., & Bekun, F. V. (2021). An investigation into the anthropogenic effect of biomass energy utilization and economic sustainability on environmental in E7 economic. Biofrp, 15(3), 840–851. https://doi.org/10.1002/bbb.2206
Hanif, I., Raza, S. M. A., Gago-de-Santos, P., & Abbas, Q. (2019). Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: Some empirical evidence. Energy, 171, 493–501.
Heaps, C. (2002). Integrated energy-environment modelling and LEAP, SEI
Hicks, A. (2017). Grid-connected photovoltaic system design review and approval. Florida solar energy center/University of Central Florida
Huang, W. M., & Lee, G. W. M. (2009). GHG legislation: Lessons from Taiwan. Energy Policy, 37(7), 2696–2707. https://doi.org/10.1016/j.enpol.2009.03.007
ICE 60364–7–712, (2017). Low voltage electrical installations – Part 7–712: Requirements for special installations or locations – Solar photovoltaic (PV) power supply system
International Energy Agency (IEA), World Energy Outlook, (2019). Available at: https://www.iea.org.
Iran meteorological organization, Iran weather stations database. (2019).
Iran Ministry of Energy: Iran, Tehran. (2015). Energy balance sheet of Iran.
Iran’s National institute of statistical, Available at: https://www.amar.org.ir.
Kachoee, M. S., Salimi, M., & Amidpour, M. (2018). The long-term scenario and greenhouse gas effects cost-benefit analysis of Iran’s electricity sector. Energy, 143, 585–596. https://doi.org/10.1016/j.energy.2017.11.049
Kale, R. V., & Pohekar, S. D. (2014). Electricity demand and supply scenarios for Mahashtra (India) for 2030: An application of long-range energy alternatives planning. Energy Policy, 72, 1–13. https://doi.org/10.1016/j.enpol.2014.05.007
Kardowani, P. (2001). Drought and ways to fight it in Iran. Tehran University Press.
Kashani, A. H., Izadkhast, P. S., & Asnaghi, A. (2013). Mapping of solar energy potential and solar system capacity in Iran. International Journal of Sustainable Energy, 33(4), 883–903.
Kebede, E., Kagochi, J., & Jolly, M. (2010). Energy consumption and economic development in Sub-Sahara Africa. Energy Economics, 32(3), 532–537. https://doi.org/10.1016/j.eneco.2010.02.003
Lin, J., Cao, B., Cui, S., Wang, W., & Bai, X. (2010). Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case study of Xiamen city China. Energy Policy, 38(9), 5123–5132. https://doi.org/10.1016/j.enpol.2010.04.042
Loáiciga, H. A. (2011). Challenges to phasing out fossil fuels as the major source of the world’s energy. Energy and Environment, 22(11), 659–679.
Mamipour, S., Beheshtipour, H., Feshari, M., & Amiri, H. (2019). Factors influencing carbon dioxide emissions in Iran’s provinces with emphasis on spatial linkages. Environmental Science and Pollution Research, 26, 18365–18378.
Masson, V., Bonhomme, M., Salagnac, J.-L., Briottet, X., & Lemonsu, A. (2014). Solar panels reduce both global warming and urban heat island. Frontiers. https://doi.org/10.3389/fenvs.2014.00014
Mollahosseini, A., Hosseini, S. A., Jabbari, M., Figoli, A., & Rahimpour, A. (2017). Renewable energy management and market in Iran: A holistic review on current state and future demands. Renewable and Sustainable Energy Reviews, 80, 774–788. https://doi.org/10.1016/j.rser.2017.05.236
Moradi, M. A. (2013). “Developing the electricity demand model for Iran’s residential sector; based on LEAP”, Presented at the 28th Power System Conference, Tehran, Iran
National Iranian Oil Refining and Distribution Company. Available at: https://niordc.ir
NCCOI. (2014). Third national communication to UNFCCC. National Climate Change Office of Iran. http://climate-change.ir
Nojedhi, P., Heidari, M., Ataei, A., Nedaei, M., & Kurdestani, E. (2016). Environmental assessment of energy production from landfill gas plants by using long-term energy alternative planning (LEAP) and IPCC methane estimation methods: A case study of Tehran. Sustainable Energy Technologies and Assessment, 16, 33–42. https://doi.org/10.1016/j.seta.2016.04.001
Noorollahi, Y., Golshanfard, A., Ansaripour, S., Khaledi, A., & Shadi, M. (2020). Solar energy for sustainable heating and cooling energy system planning in arid climates. Energy 119421
Noorollahi, Y., Khatibi, A., & Eslami, S. (2021). Replacing natural gas with solar and wind energy to supply the thermal demand of buildings in Iran: A simulation approach. Sustainable Energy Technologies and Assessment, 44, 101047. https://doi.org/10.1016/j.seta.2021.101047
Owolabi, A. B., Nsafon, B. E. K., Roh, J. W., Suh, D., & H, J. -S. (2019). Validating the techno-economic and environmental sustainability of solar PV technology in Nigeria using RETScreen experts to assess its viability. Sustainable Energy Technologies and Assessments, 36, 1000542.
Park, C.-H., Ko, Y.-U., Kim, J.-H., & Hong, H. (2020). Greenhouse gas reduction effects of solar energy systems applicable to high-rise apartment housing structures in South Korea. Energies, 13, 2568. https://doi.org/10.3390/en13102568
Raza, M. A., Khatri, K. L., & Hussain, A. (2022). Transition from fossilized to defossilized energy system in Pakistan. Renewable Energy, 190, 19–29.
Renewable Energy and Energy Efficiency Organization (SATBA), (2018). Available online: http://www.satba.gov.ir.
Revised 1996 IPCC guidelines for national greenhouse gas inventories, 1996, Intergovernmental Panel on Climate Change, 3.
Sarkodie, S. A. & Strezov, V. (2019). Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Science of the Total Environment 862–871
Shahsavari, A., Yazdi, F. T., and Yazdi, H. T. (2019). Potential of solar energy in Iran for carbon dioxide mitigation. International Journal of Environmental Science and Technology, 16, 507–524. https://doi.org/10.1007/s13762-018-1779-7
Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting- A review. Renewable and Sustainable Energy Reviews, 16(2), 1223–1240. https://doi.org/10.1016/j.rser.2011.08.014
Taherahmadi, J., Noorollahi, Y., & Panahi, M. (2020). Toward comprehensive zero energy building definitions: A literature review and recommendations. International Journal of Sustainable Energy, 40(2), 120–148. https://doi.org/10.1080/14786451.2020.1796664
Tan, V. and Seng, A.K. (2012). Handbook for solar photovoltaic (PV) systems. Energy market authority, Singapore
Tsai, M.-S., & Chang, S.-L. (2018). Taiwan’s 2050 low carbon development roadmap: An evaluation with the MARKAL model. Renewable and Sustainable Energy Reviews, 49, 178–191.
United Nations Framework Convention on Climate Change, (2020). Now it is the time to build a 21st century energy system
United Nations Website, (2018). Available online: http://data.un.org/en/iso/ir.html
Vincent, I., Lee, E. -C., Cha, K. -H., Kim, H. -M. (2021). The WASP model on the symbiotic strategy of renewable and nuclear power for the future of ‘Renewable Energy 3020’ policy in South Korea. Renewable Energy, 172, 929–940, https://doi.org/10.1016/j.renene.2021.03.094
Wang, J., Cai, H., & Li, L. (2020). Energy demand and carbon emission peak forecasting of Beijing based on LEAP energy simulation method. Global NEST Journal, 22, 565–569. https://doi.org/10.30955/gnj.003387
Wang, K., Chen, S., Liu, L., Zhu, T., & Gan, Z. (2018a). Enhancement of renewable energy penetration through energy storage technologies in a CHP-based energy system for Chongming China. Energy, 162, 988–1002.
Wang, Q., Li, S., & Li, R. (2018b). Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques. Energy, 161, 821–831.
Wang, Q., Mu, R., Yuan, X., & Ma, C. (2010). Research on energy demand forecast with LEAP model based on scenario analysis – A case study of Shandong province. Asia-Pacific Power and Energy Engineering Conference. https://doi.org/10.1109/appeec.2010.5448657
WorldBank, (2018). World Data Bank. Available at: https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?view=map. Accessed 12 June 2018
Yang, D., Liu, D., Huang, A., Lin, J., & Xu, L. (2021). Critical transformation pathway and socio-environmental benefits of energy substitution using LEAP scenario modeling. Renewable and Sustainable Energy Reviews, 135, 110116. https://doi.org/10.1016/j.rser.2020.110116
York, R. (2007). Demographic trends and energy consumption in European Union Nations, 1960–2025. Social Science Research, 36(3), 855–872. https://doi.org/10.1016/j.ssresearch.2006.06.007
Yu, H., Pan, S.-Y., Tang, B.-J., Mi, Z.-F., Zhang, Y., & Wei, Y.-M. (2015). Urban energy consumption and CO2 emissions in Beijing: Current and future. Energy Efficiency, 8, 527–543. https://doi.org/10.1007/s12053-014-9305-3
Yuan, X.-C., Wei, Y.-M., Mi, Z., Sun, X., Zhao, W., & Wang, B. (2017). Forecasting China’s regional energy demand by 2030: A Bayesian approach. Resources, Conservation & Recycling, 127, 85–95.
Zam, K., Gupta, M. K., and Uddin, S. M. N. (2021). The residential energy futures of Bhutan Energy Efficiency 14 (38) DOI: https://doi.org/10.1007/s12053-021-09948-x.
Zhang, Y., Chen, R., Tang, J., Stewart, W. F., and Sun, J. (2017). LEAP: learning to prescribe effective and safe treatment combinations for multimorbidity. In proceedings of the 23rd ACM SIGKDD international conference on knowledge Discovery and data Mining, 1315–1324. https://doi.org/10.1145/3097983.3098109