Forecasting functional time series

Journal of the Korean Statistical Society - Tập 38 Số 3 - Trang 199-211 - 2009
Rob Hyndman1, Han Lin Shang1
1Department of Econometrics & Business Statistics, Monash University, VIC, 3800, Melbourne, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aguilera, 2006, Using principal components for estimating logistic regression with high-dimensional multicollinear data, Computational Statistics & Data Analysis, 50, 1905, 10.1016/j.csda.2005.03.011

Alho, 2005, Remarks on the use of probabilities in demography and forecasting, 27

Alho, 2005

Bellman, 1961

Cai, 2006, Prediction in functional linear regression, Annals of Statistics, 34, 2159, 10.1214/009053606000000830

Chatfield, 1993, Calculating interval forecasts, Journal of Business & Economic Statistics, 11, 121, 10.2307/1391361

Chatfield, 2000

Dauxois, 1982, Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference, Journal of Multivariate Analysis, 12, 136, 10.1016/0047-259X(82)90088-4

Delaigle, A., Hall, P., & Apanasovich, T. V. (2009). Weighted least squares methods for prediction in the functional data linear model. arXiv:0902.3319v1 [stat.ME]. http://arxiv.org/abs/0902.3319v1

Erbas, 2007, Forecasting age-specific breast cancer mortality using functional data models, Statistics in Medicine, 26, 458, 10.1002/sim.2306

Escabias, 2004, Principal component estimation of function logistic regression: Discussion of two different approaches, Journal of Nonparametric Statistics, 16, 365, 10.1080/10485250310001624738

Faber, 2002, Uncertainty estimation for multivariate regression coefficients, Chemometrics and Intelligent Laboratory Systems, 64, 169, 10.1016/S0169-7439(02)00102-8

Fernández Pierna, 2003, Estimation of partial least squares regression prediction uncertainty when the reference values carry a sizeable measurement error, Chemometrics and Intelligent Laboratory Systems, 65, 281, 10.1016/S0169-7439(02)00139-9

Greenshtein, 2006, Best subset selection, persistence in high-dimensional statistical learning and optimization under l1 constraint, Annals of Statistics, 34, 2367, 10.1214/009053606000000768

Greenshtein, 2004, Persistence in high-dimensional linear predictor selection and the virtue of overparameterization, Bernoulli, 10, 971, 10.3150/bj/1106314846

Hall, 2007, Methodology and convergence rates for functional linear regression, Annals of Statistics, 35, 70, 10.1214/009053606000000957

Hall, 2006, On properties of functional principal components analysis, Journal of the Royal Statistical Society: Series B, 68, 109, 10.1111/j.1467-9868.2005.00535.x

Hall, 2009, Theory for high-order bounds in functional principal components analysis, Mathematical Proceedings of the Cambridge Philosophical Society, 146, 225, 10.1017/S0305004108001850

Hall, 2006, Properties of principal component methods for functional and longitudinal data analysis, Annals of Statistics, 34, 1493, 10.1214/009053606000000272

Human Mortality Database, (2008). University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Data downloaded on 10 Sep 2008 www.mortality.org

Hyndman, R. J. (2007). addb: Australian Demographic Data Bank. R package version 3.222. http://www.robhyndman.info/Rlibrary/addb

Hyndman, 2008, Stochastic population forecasts using functional data models for mortality, fertility and migration, International Journal of Forecasting, 24, 323, 10.1016/j.ijforecast.2008.02.009

Hyndman, 2008

Hyndman, R. J., & Shang, H. L. (2008a). ftsa: Functional time series analysis. R package version 1.0. http://monashforecasting.com/index.php?title=R_packages

Hyndman, R. J., & Shang, H. L. (2008b). Rainbow plots, bagplots, and boxplots for functional data. Working paper 9/08, Department of Econometrics & Business Statistics, Monash University. http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/2008/9-08.php

Hyndman, 2007, Robust forecasting of mortality and fertility rates: A functional data approach, Computational Statistics & Data Analysis, 51, 4942, 10.1016/j.csda.2006.07.028

Kargin, 2008, Curve forecasting by functional autoregression, Journal of Multivariate Analysis, 99, 2508, 10.1016/j.jmva.2008.03.001

Krämer, 2008, Penalized partial least squares with applications to B-spline transformations and functional data, Chemometrics and Intelligent Laboratory Systems, 94, 60, 10.1016/j.chemolab.2008.06.009

Martens, 1989

Mesle, 1991, Reconstitution of annual life tables for nineteenth-century France, Population: An English Selection, 3, 33

Ng, P. T., & Maechler, M. (2008). COBs: COBS — Constrained B-splines (Sparse matrix based). R package version 1.1-5. http://wiki.r-project.org/rwiki/doku.php?id=packages:cran:cobs

Preda, 2005, Clusterwise PLS regression on a stochastic process, Computational Statistics & Data Analysis, 49, 99, 10.1016/j.csda.2004.05.002

Preda, 2005, PLS regression on a stochastic process, Computational Statistics & Data Analysis, 48, 149, 10.1016/j.csda.2003.10.003

Ramsay, 1991, Some tools for functional data analysis (with discussion), Journal of the Royal Statistical Society: Series B, 53, 539

Ramsay, 2002

Ramsay, 2005

Reiss, 2007, Functional principal component regression and functional partial least squares, Journal of the American Statistical Association, 102, 984, 10.1198/016214507000000527

Rice, 1991, Estimating the mean and covariance structure nonparametrically when the data are curves, Journal of the Royal Statistical Society: Series B, 53, 233

Silverman, 1995, Incorporating parametric effects into functional principal components analysis, Journal of the Royal Statistical Society: Series B, 57, 673

Silverman, 1996, Smoothed functional principal components analysis by choice of norm, Annals of Statistics, 24, 1, 10.1214/aos/1033066196

Wedderburn, 1974, Quasi-likelihood functions, generalized linear models, and the Gauss–Newton method, Biometrika, 61, 439

Wilmoth, 2007

Wold, 1975, Soft modelling by latent variables: The non-linear iterative partial least squares (NIPALS) approach, 117

Wood, 1994, Monotonic smoothing splines fitted by cross validation, SIAM Journal on Scientific Computing, 15, 1126, 10.1137/0915069

Yao, 2005, Functional linear regression analysis for longitudinal data, Annals of Statistics, 33, 2873, 10.1214/009053605000000660