Forecasting flood-prone areas using Shannon’s entropy model

Springer Science and Business Media LLC - Tập 126 Số 3 - 2017
Ali Haghizadeh1, Safoura Siahkamari1, Amir Hamzeh Haghiabi2, Omid Rahmati1
1Department of Watershed Management Engineering, Faculty of Agriculture, Lorestan University, Lorestan, Iran
2Department of Water Engineering, Faculty of Agriculture, Lorestan University, Lorestan, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdideh M, Qorashi M, Rangzan M and Aryan M 2011 Assessment of relative active tectonics using morphometric analysis, case study of Dez river (southwestern Iran); Scientific Quart. J. Geosci. 80 33–46.

Aniya M 1985 Landslide-susceptibility mapping in the Amahata river basin, Japan; ANN Assoc. Am. Geogr. 75 102–114.

Bednarik M, Magulova B, Matys M and Marschalko M 2010 Landslide susceptibility assessment of the Kralovany–Liptovsky Mikulaš railway case study; Phys. Chem. Earth 35 162–171.

Campolo M, Soldati A and Andreussi P 2003 Artificial neural network approach to flood forecasting in the River Arno; Hydrol. Sci. J. 48 381–398.

Constantin M, Bednarik M, Jurchescu M C and Vlaicu M 2011 Landslide susceptibility bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania); Environ. Earth Sci. 63 397–406.

Hosseini M and Matlabifar F 2008 Study and investigation of flood management and solutions to reduce flood damages, Sepehr (Geographical Organization), 16th year; 63.

Hosseinpour A and Abbaspour R A 2014 Optimization of landslide forecasting results using Shannon’s entropy theory; Knowl. Hazards 2 253–268.

Jaafari A, Najafi A, Pourghasemi H R, Rezaeian J and Sattarian A 2013 GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran; Int. J. Environ. Sci. Technol., doi: 10.1007/s13762-013-0464-0 .

Kawachi T, Maruyama T and Singh V P 2001 Rainfall entropy for delineation of water resources zones in Japan; J. Hydrol. 246 (1) 36–44.

Kia M B, Pirasteh S, Pradhan B, Mahmud A R, Sulaiman W N A and Moradi A 2012 An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia; Environ. Earth Sci. 67 251–264.

Lee M J, Kang Je and Jeon S 2012 Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. IGARSS; IEEE Int., doi: 10.1109/IGARSS.2012.6351414 .

Li C, Singh V P and Mishra A K 2012 Entropy theory-based criterion for hydrometric network evaluation and design: Maximum information minimum redundancy; Water Resour. Res. 48 (5).

Liu Y and De Smedt F 2005 Flood modeling for complex terrain using GIS and remote sensed information; Water Resour. Manag. 19 605–624.

Manandhar B, Balla M K, Awal R and Pradhan B M 2010. Floodplain analysis and risk assessment of lothar khola (stream); MSc Thesis, Tribhuvan University, Phokara, Nepal, 64p.

Mishra A K and Coulibaly P 2010 Hydrometric network evaluation for Canadian watersheds; J. Hydrol. 380 (3) 420–437.

Mishra A K and Coulibaly P 2014 Variability in Canadian seasonal streamflow information and its implication for hydrometric network design; J. Hydrol. Eng. 19 (8) 05014003.

Mishra A K, Özger M and Singh V P 2009 An entropy-based investigation into the variability of precipitation ; J. Hydrol. 370 (1) 139–154.

Naghibi S A, Pourghasemi H R, Pourtaghie Z S and Rezaei A 2014 Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran; Earth Sci. Inform. 8 (1) 171–186.

Ozdemir A and Altural T 2013 A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey; J. Asian Earth Sci. 64 180– 197.

Pourghasemi H R, Mohammady M and Pradhan B 2012 Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran; Catena 97 71–84.

Pourghasemi H R, Pradhan B, Gokceoglu C and Moezzi K D 2013a A comparative assessment of prediction capabilities of Dempster-Shafer and weights-of-evidence models in landslide susceptibility mapping using GIS; Geomat. Nat. Hazards 4 93–118.

Pourghasemi H R, Pradhan B, Gokceoglu C, Mohammadi M and Moradi H R 2013b Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran; Arab. J. Sci. Eng. 6 2351–2365.

Pourghasemi H R, Jirandeh A G, Pradhan B, Xu C and Gokceoglu C 2013c Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran; J. Earth Syst. Sci. 122 349–369.

Pourghasemi H R, Moradi H R and Aghda S M F 2013d Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances; Nat. Hazards 69 749–779.

Pourghasemi H R, Moradi H R and Fatemi Aghda S M 2014 Prioritizing factors affecting landslide and zonation of its susceptibility using Shannon’s entropy index; Soil Water Sci. 70 181–191.

Pradhan B and Lee S 2010 Landslide susceptibility assessment and factor effect analysis: Back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling; Environ. Model. Softw. 25 747–759.

Rahmati O, Haghizadeh A and Stefanidis S 2016a Assessing the accuracy of GIS-based analytical hierarchy process for watershed prioritization; Gorganrood River Basin, Iran; Water Resour. Manag. 30 (3) 1131–1150.

Rahmati O, Haghizadeh A, Pourghasemi H R and Noormohamadi F 2016b Gully erosion susceptibility mapping: The role of GIS-based bivariate statistical models and their comparison; Nat. Hazards 82 (2) 1231–1258.

Rahmati O, Pourghasemi H R and Zeinivand H 2016c Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran; Geocarto Int. 31 (1) 42–70.

Rajsekhar D, Mishra A K and Singh V P 2012 Regionalization of drought characteristics using an entropy approach; J. Hydrol. Eng. 18 (7) 870–887.

Regmi A D, Devkota K C, Yoshida K, Pradhan B, Pourghasemi H R, Kumamoto T and Akgun A 2013 Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in central Nepal Himalaya; Arab. J. Sci. Eng. 7 725–742.

Regmi N R, Giardino J R and Vitek J D 2010 Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA; Geomorphol. 115 172–187.

Sanyal J and Lu X X 2004 Application of remote sensing in flood management with special reference to monsoon Asia: A review; Nat. Hazards 33 283–301.

Shafapour Tehrani M, Lee M J, Pradhan B and Neamah Jebur M 2013 Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS ; J. Hydrol. 504 69–79.

Shafapour Tehrani M, Lee M J, Pradhan B, Neamah Jebur M and Lee S 2014 Flood susceptibility mapping using integrated bivariate and multivariate statistical models; J. Hydrol. 512 332–343.

Singh V P 1997 The use of entropy in hydrology and water resources; Hydrol. Process. 11 587–626.

Skilodimou H, Livaditis G, Bathrellos G and Verikiouâ Papaspiridakou E 2003 Investigating the flooding events of the urban regions of Glyfada and Voula, Attica, Greece: A contribution to urban geomorphology; Geogr. Ann. A 85 197–204.

Tahmassebipoor N, Rahmati O, Noormohamadi F and Lee S 2016 Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing; Arab. J. Geosci. 9 (1) 1–18.

Zare’ Garizi A, Brady Sheikh V, Saad Eddin A and Salman Mahini A 2012 Applications logistic regression modeling to change the spatial pattern of vegetation (Case study: Watershed Chehelchay, Golestan Province); Geogr. Space 37 55–68.

Zare’ M, Pourghasemi H R, Vafakhah M and Pradhan B 2013 Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms; Arab. J. Sci. Eng. 6 2873–2888.