Forecasting cross-border power transmission capacities in Central Western Europe using artificial neural networks
Tóm tắt
Flow-based Market Coupling (FBMC) provides welfare gains from cross-border electricity trading by efficiently providing coupling capacity between bidding zones. In the coupled markets of Central Western Europe, common regulations define the FBMC methods, but transmission system operators keep some degrees of freedom in parts of the capacity calculation. Besides, many influencing factors define the flow-based capacity domain, making it difficult to fundamentally model the capacity calculation and to derive reliable forecasts from it. In light of this challenge, the given contribution reports findings from the attempt to model the capacity domain in FBMC by applying Artificial Neural Networks (ANN). As target values, the Maximum Bilateral Exchanges (MAXBEX) have been chosen. Only publicly available data has been used as inputs to make the approach reproducible for any market participant. It is observed that the forecast derived from the ANN yields similar results to a simple carry-forward method for a one-hour forecast, whereas for a longer-term forecast, up to twelve hours ahead, the network outperforms this trivial approach. Nevertheless, the overall low accuracy of the prediction strongly suggests that a more detailed understanding of the structure and evolution of the flow-based capacity domain and its relation to the underlying market and infrastructure characteristics is needed to allow market participants to derive robust forecasts of FMBC parameters.
Tài liệu tham khảo
Belgian Federal Commission for Electricity and Gas Regulation (2017) Functioning and design of the Central West European day-ahead flow based market coupling for electricity: Impact of TSOs Discretionary Actions. CREG. https://www.creg.be/sites/default/files/assets/Publications/Studies/F1687EN.pdf.
Bjørndal, E, Bjørndal M, Cai H (2018) Flow-Based Market Coupling in the European Electricity Market – A Comparison of Efficiency and Feasibility. Norwegian School of Economics, Department of Business and Management Science. https://ideas.repec.org/p/hhs/nhhfms/2018_014.html. Discussion Papers.
Bjorndal, E, Bjorndal MH, Cai H (2018) The Flow-Based Market Coupling Model and the Bidding Zone Configuration. SSRN Electron J. https://www.ssrn.com/abstract=3272190.
Brockwell, PJ, Davis RA (2016) Introduction to Time Series and Forecasting. 3rd edn. Springer, Berlin.
Boury, J (2015) Methods for the determination of flow-based capacity parameters: description, evaluation and improvements. Master’s thesis, KU Leuven.
Cen, Z, Wang J (2018) Forecasting neural network model with novel CID learning rate and EEMD algorithms on energy market. Neurocomputing 317:168–178.
Cen, Z, Wang J (2019) Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer. Energy 169:160–171.
EFET - European Federation of Energy Traders (2018) Open letter to CWE regulators regarding the transparency of data provided by TSOs in the framework of flow-based market coupling. Technical report, European Federation of Energy Traders.
European Commission (2017) Documentation of the CWE FB MC solution. Technical report, ENTSO-E.
Fainti, R, Alamaniotis M, Tsoukalas LH (2016) Three-phase congestion prediction utilizing artificial neural networks In: 2016 7th International Conference on Information, Intelligence, Systems Applications (IISA), 1–5.. IEEE.
Finck, R, Ardone A, Fichtner W (2018) Impact of Flow-Based Market Coupling on Generator Dispatch in CEE Region In: 2018 15th International Conference on the European Energy Market (EEM), Lódz, PL, June 27–29, 2018, 1–5.. IEEE, Piscataway.
Haykin, S (2008) Neural Networks and Learning Machines: A Comprehensive Foundation. 3rd edn. Pearson, London.
Hudson Beale, M, Hagan MT, Demuth HB (1999) Deep Learning Toolboxtm User’s Guide. The MathWorks Inc.https://de.mathworks.com/help/pdf_doc/deeplearning/nnet_ref.pdf.
Khatavkar, V, Swathi D, Mayadeo H, Dharme A (2018) Short-term estimation of transmission reliability margin using artificial neural networks. Adv Intell Syst Comput 628:17–27.
Matthes, B, Spieker C, Rehtanz C (2017) Flow-based parameter determination in large-scale electric power transmission systems In: 2017 IEEE Manchester PowerTech, 1–6.. IEEE.
Nazar, MS, Fard AE, Heidari A, Shafie-khah M, Catalão JP (2018) Hybrid model using three-stage algorithm for simultaneous load and price forecasting. Electr Power Syst Res 165:214–228.
Official Journal of the European Union (2015) Guideline on capacity allocation and congestion management. Technical report, Commission Regulation (EU) 2015/1222.
Plancke, G, De Vos K, De Jonghe C, Belmans R (2016) Efficient use of transmission capacity for cross-border trading: Available Transfer Capacity versus flow-based approach In: 2016 IEEE International Energy Conference (ENERGYCON), 1–5.. IEEE.
Qin, Y, Li K, Liang Z, Lee B, Zhang F, Gu Y, Zhang L, Wu F, Rodriguez D (2019) Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal. Appl Energy 236:262–272.
Schönheit, D, Sikora R (2018) A Statistical Approach to Generation Shift Keys In: 2018 15th International Conference on the European Energy Market (EEM), 1–6.
Sőrés, P, Divényi D, Raisz D (2013) Flow-based capacity calculation method used in electricity market coupling In: 2013 10th International Conference on the European Energy Market (EEM), 1–7.. IEEE.
Staudt, P, Träris Y, Rausch B, Weinhardt C (2018) Predicting Redispatch in the German Electricity Market using Information Systems based on Machine Learning In: 39th International Conference on Information Systems. ICIS 2018 Proceedings.
van Stiphout, F (2016) Approximating the Flow-Based Transport Capacity Constraints for the Day-Ahead Power Market. Master’s thesis, University of Twente.
Van den Bergh, K, Boury J, Delarue E (2016) The flow-based market coupling in Central Western Europe: Concepts and definitions. Electr J 29(1):24–29.
Wallin, P (2016) Estimation of cross-border flow inelectricity markets using a Markovian-Tobit approach. Master’s thesis, KTH Swedish Royal Institute of technology.
Wang, F, Zhang Z, Liu C, Yu Y, Pang S, Duić N, Shafie-khah M, Catalão JP (2019a) Generative adversarial networks and convolutional neural networks based weather classification model for day ahead short-term photovoltaic power forecasting. Energy Convers Manag 181:443–462.
Wang, F, Li K, Zhou L, Ren H, Contreras J, Shafie-Khah M, Catalão JP (2019b) Daily pattern prediction based classification modeling approach for day-ahead electricity price forecasting. Int J Electr Power Energy Syst 105:529–540.
Wyrwoll, L, Kollenda K, Müller C, Schnettler A (2018) Impact of Flow-Based Market Coupling Parameters on European Electricity Markets In: 2018 53rd International Universities Power Engineering Conference (UPEC), 1–6.. IEEE.
Yamin, H, Shahidehpour S, Li Z (2004) Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets. Int J Electr Power Energy Syst 26(8):571–581.