Forecasting Financial Failure of Firms via Genetic Algorithms

Eduardo Acosta-González1, Fernando Fernández Rodríguez1
1Faculty of Economics, Management and Tourism, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran, Canaria, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acosta-González, E., & Fernández-Rodríguez, F. (2007). Model selection via genetic algorithms illustrated with cross-country growth data. Empirical Economics, 33, 313–337.

Altman, E. (1968). Financial ratios, discriminate analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23, 589–609.

Altman, E. (1993). Corporate financial distress and bankruptcy (2nd ed.). New York: Wiley.

Balcane. S., & Ooghe, H. (2004). 35 years of studies on business failure. Working Paper 2004/248. Faculteit Economie en Bedrijfskunde.

Dietrich, J. R. (1984). Discussion of methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 83–86.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19, 1–141.

Hendry, D. F., & Krolzig, H. M. (2001). Automatic Econometric Model Selection Using PcGets 1.0. London: Timberlake Consultants Press.

Hoover, K. D., & Perez, S. J. (1999). Data mining reconsidered: Encompassing and the general- to-specific approach to specification search. Econometrics Journal, 2, 167–191.

Holland, J. (1975). Adaptation in natural and artificial systems. Michigan, Ann Arbor: The University of Michigan Press.

Jones, S., & Hensher, D. A. (2004). Predicting firm financial distress: A mixed LOGIT model. The Accounting Review, 79, 1011–1038.

King, G., Honaker, J., Joseph, A., & Scheve, K. (2001). Analyzing incomplete political science data: An alternative algorithm for multiple imputation. American Political Science Review, 95, 49–69.

Lovell, M. C. (1983). Data mining. Review of Economic and Statistics, 65, 1–12.

McKee, T. E., & Lensberg, T. (2002). Genetic programming and rough sets: A hybrid approach to bankruptcy classification. European Journal of Operational Research, 138, 436–451.

Messier, W. F., & Hansen, J. V. (1988). Inducting rules for expert system development: An example using default and bankruptcy data. Management Science, 34, 1403–1415.

Miller, A. (2002). Subset selection in regression. London: Chapman & Hall/CRC.

Ohlson, J. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18, 109–131.

Olmeda, I., & Fernández, E. (1997). Hybrid classifiers for financial multicriteria decision making: The case of bankruptcy prediction. Computational Economics, 10, 317–335.

Perez-Amaral, T., Gallo, G. M., & White, H. (2003). A flexible tool for model building: The relevant transformation of the inputs network approach (RETINA). Oxford Bulletin of Economics and Statistics, 65, 821–838.

Sala-i-Martin, X. X. (1997). I just ran two million regressions. American Economic Review, 87, 178–183.

Satchell, S. & Xia, W. (2007). Analytic Models of ROC Curve: Applications to Credit Rating Model Validation. Social Science Research Network. Working Paper Series

Sobehart, J. R., Keenan, S. C., & Stein, R. (2000). Validation methodologies for default risk models. Credit, 1(4), 51–56.

Sobehart, JR., Keenan, S.C., (2001, March). Measuring Default Accurately. Risk Magazine, 31–33.

Tam, K. Y., & Kiang, M. Y. (1992). Managerial applications of neural networks: The case of bank failure prediction. Management Science, 38, 926–947.