Forecasting Different Types of Convective Weather: A Deep Learning Approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beijbom, O., P. J. Edmunds, D. I. Kline, et al., 2012: Automated annotation of coral reef survey images. Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Providence, RI, USA, 1170–1177, doi: https://doi.org/10.1109/CVPR.2012.6247798 .
Bengio, Y., 2009: Learning Deep Architectures for AI. Foundations and Trends® in Machine Learning, Vol. 2, No. 1, 1–127, now Publishers Inc., Hanover, MA, USA, doi: https://doi.org/10.1561/2200000006 .
Buda, M., A. Maki, and M. A. Mazurowski, 2018: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw., 106, 249–259, doi: https://doi.org/10.1016/j.neunet.2018.07.011 .
Chaudhuri, S., 2010: Convective energies in forecasting severe thunderstorms with one hidden layer neural net and variable learning rate back propagation algorithm. Asia-Pacific J. Atmos. Sci., 46, 173–183, doi: https://doi.org/10.1007/s13143-010-0016-1 .
Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, et al., 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639–653, doi: https://doi.org/10.1175/WAF-D-13-00113.1 .
Ciregan, D., U. Meier, and J. Schmidhuber, 2012: Multi-column deep neural networks for image classification. Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Providence, RI, USA, 3642–3649, doi: https://doi.org/10.1109/CVPR.2012.6248110 .
Doswell III, C. A., 2001: Severe Convective Storms. American Meteorological Society, Boston, MA, USA, 561 pp, doi: https://doi.org/10.1007/978-1-935704-06-5 .
Doswell III, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581, doi: https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2 .
Gagne II, D. J., A. McGovern, and M. Xue, 2014: Machine learning enhancement of storm-scale ensemble probabilistic quantitative precipitation forecasts. Wea. Forecasting, 29, 1024–1043, doi: https://doi.org/10.1175/WAF-D-13-00108.1 .
Gagne II, D. J., A. McGovern, J. Brotzge, et al., 2015: Day-ahead hail prediction integrating machine learning with storm-scale numerical weather models. Proceedings of the 27th Conference on Innovative Applications of Artificial Intelligence, AAAI, Austin, TX, USA, 3954–3960.
Gagne II, D. J., A. McGovern, S. E. Haupt, et al., 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 1819–1840, doi: https://doi.org/10.1175/WAF-D-17-0010.1 .
Gardner, M. W., and S. R. Dorling, 1998: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ., 32, 2627–2636, doi: https://doi.org/10.1016/S1352-2310(97)00447-0 .
Gope, S., S. Sarkar, P. Mitra, et al., 2016: Early prediction of extreme rainfall events: A deep learning approach. Proceedings of the 16th Industrial Conference on Data Mining, Springer, New York, NY, USA, 154–167, doi: https://doi.org/10.1007/978-3-319-41561-1_12 .
Grzymala-Busse, J. W., L. K. Goodwin, W. J. Grzymala-Busse, et al., 2004: An approach to imbalanced data sets based on changing rule strength. Rough-Neural Computing: Techniques for Computing with Words, S. K. Pal, L. Polkowski, and A. Skowron, Eds., Springer, Berlin Heidelberg, 543–553, doi: https://doi.org/10.1007/978-3-642-18859-6_21 .
Han, L., J. Z. Sun, W. Zhang, et al., 2017: A machine learning nowcasting method based on real-time reanalysis data. J. Geophys. Res. Atmos., 122, 4038–4051, doi: https://doi.org/10.1002/2016JD025783 .
Herman, G. R., and R. S. Schumacher, 2018: Money doesn’t grow on trees, but forecasts do: Forecasting extreme precipitation with random forests. Mon. Wea. Rev., 146, 1571–1600, doi: https://doi.org/10.1175/MWR-D-17-0250.1 .
Kingma, D. P., and J. Ba, 2015: Adam: A method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations, IEEE, San Diego, USA, 3156–3165.
Klein, B., L. Wolf, and Y. Afek, 2015: A dynamic convolutional layer for short range weather prediction. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, MA, USA, 4840–4848, doi: https://doi.org/10.1109/CVPR.2015.7299117 .
Klein, W. H., B. M. Lewis, and I. Enger, 1959: Objective prediction of five-day mean temperatures during winter. J. Meteor., 16, 672–682, doi: https://doi.org/10.1175/1520-0469(1959)016<0672:OPOFDM>2.0.CO;2 .
Krawczyk, B., 2016: Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell., 5, 221–232, doi: https://doi.org/10.1007/s13748-016-0094-0 .
Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems, ACM, Lake Tahoe, USA, 1097–1105.
Kubat, M., R. C. Holte, and S. Matwin, 1998: Machine learning for the detection of oil spills in satellite radar images. Mach. Learn., 30, 195–215, doi: https://doi.org/10.1023/A:1007452223027 .
Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine learning for real-time prediction of damaging straight-line convective wind. Wea. Forecasting, 32, 2175–2193, doi: https://doi.org/10.1175/WAF-D-17-0038.1 .
Lakshmanan, V., G. Stumpf, and A. Witt, 2005: A neural network for detecting and diagnosing tornadic circulations using the mesocyclone detection and near storm environment algorithms. Proceedings of AI Applications with a Nowcasting Flavor (Joint between the Fourth Conference on Artificial Intelligence and the 21st International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology), Amer. Meteor. Soc., San Diego, CA, USA, J5.2.
LeCun, Y., and Y. Bengio, 1995: Convolutional networks for images, speech, and time-series. The Handbook of Brain Theory and Neural Networks, M. A. Arbib, Ed., MIT Press, Cambridge, MA, USA, 10 pp.
Mac Namee, B., P. Cunningham, S. Byrne, et al., 2002: The problem of bias in training data in regression problems in medical decision support. Artif. Intell. Med., 24, 51–70, doi: https://doi.org/10.1016/S0933-3657(01)00092-6 .
Manzato, A., 2005: The use of sounding-derived indices for a neural network short-term thunderstorm forecast. Wea. Forecasting, 20, 896–917, doi: https://doi.org/10.1175/WAF898.1 .
Manzato, A., 2007: Sounding-derived indices for neural network based short-term thunderstorm and rainfall forecasts. Atmos. Res., 83, 349–365, doi: https://doi.org/10.1016/j.atmosres.2005.10.021 .
Manzato, A., 2013: Hail in northeast Italy: A neural network ensemble forecast using sounding-derived indices. Wea. Forecasting, 28, 3–28, doi: https://doi.org/10.1175/WAF-D-12-00034.1 .
Marzban, C., and G. J. Stumpf, 1996: A neural network for tornado prediction based on Doppler radar-derived attributes. J. Appl. Meteor., 35, 617–626, doi: https://doi.org/10.1175/1520-0450(1996)035<0617:ANNFTP>2.0.CO;2 .
Marzban, C., and G. J. Stumpf, 1998: A neural network for damaging wind prediction. Wea. Forecasting, 13, 151–163, doi: https://doi.org/10.1175/1520-0434(1998)013<0151:ANNFDW>2.0.CO;2 .
Matsugu, M., K. Mori, Y. Mitari, et al., 2003: Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw., 16, 555–559, doi: https://doi.org/10.1016/S0893-6080(03)00115-1 .
Meng, Z. Y., D. C. Yan, and Y. J. Zhang, 2013: General features of squall lines in east China. Mon. Wea. Rev., 141, 1629–1647, doi: https://doi.org/10.1175/MWR-D-12-00208.1 .
Pedregosa, F., G. Varoquaux, A. Gramfort, et al., 2011: Scikitlearn: Machine learning in Python. J. Mach. Learn. Res., 12, 2825–2830.
Perol, T., M. Gharbi, and M. Denolle, 2018: Convolutional neural network for earthquake detection and location. Sci. Adv., 4, e1700578, doi: https://doi.org/10.1126/sciadv.1700578 .
Ray, P. S., 1986: Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, USA, 793 pp, doi: https://doi.org/10.1007/978-1-935704-20-1_2 .
Sanders, J., and E. Kandrot, 2010: CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Educational Publishers Inc., Upper Saddle River, NJ, USA, 312 pp.
Schmidhuber, J., 2015: Deep learning in neural networks: An overview. Neural Netw., 61, 85–117, doi: https://doi.org/10.1016/j.neunet.2014.09.003 .
Sheridan, P., 2018: Current gust forecasting techniques, developments and challenges. Adv. Sci. Res., 15, 159–172, doi: https://doi.org/10.5194/asr-15-159-2018 .
Shi, X. J., Z. R. Chen, H. Wang, et al., 2015: Convolutional LSTM network: A machine learning approach for precipitation now-casting. Proceedings of the 28th International Conference on Neural Information Processing Systems, ACM, Montreal, Canada, 802–810.
Simonyan, K., and A. Zisserman, 2015: Very deep convolutional networks for large-scale image recognition. Proceedings of the 3rd International Conference on Learning Representations, IEEE, San Diego, USA, 313–318.
Stensrud, D. J., M. Xue, L. J. Wicker, et al., 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 1487–1500, doi: https://doi.org/10.1175/2009BAMS2795.1 .
Sun, J. S., J. H. Dai, L. F. He, et al., 2014: The Basic Principle and Technical Method of Strong Convective Weather Forecast. China Meteorological Press, Beijing, 1–21. (in Chinese)
Tian, F. Y., Y. G. Zheng, T. Zhang, et al., 2015: Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China. J. Meteor. Res., 29, 370–384, doi: https://doi.org/10.1007/s13351-014-4119-y .
Wang, Y. B., M. S. Long, J. M. Wang, et al., 2017: PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs. Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 879–888.
Xia, R. D., D.-L. Zhang, and B. L. Wang, 2015: A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over central and eastern China. J. Appl. Meteor. Climatol., 14, 2443–2460, doi: https://doi.org/10.1175/JAMC-D-15-0029.1 .
Yang, X. L., J. H. Sun, and W. L. Li, 2015: An analysis of cloud-to-ground lightning in China during 2010–13. Wea. Forecasting, 30, 1537–1550, doi: https://doi.org/10.1175/WAF-D-14-00132.1 .
Yang, X. L., J. H. Sun, and Y. G. Zheng, 2017: A 5-yr climatology of severe convective wind events over China. Wea. Forecasting, 32, 1289–1299, doi: https://doi.org/10.1175/WAF-D-16-0101.1 .
Yu, X. D., 2011: Ingredients based forecasting methodology. Meteor. Mon., 37, 913–918. (in Chinese)
Zhang, W., L. Han, J. H. Sun, et al., 2017: Application of multichannel 3D-cube successive convolution network for convective storm nowcasting. IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Honolulu, USA, 118–127.
Zhang, X. L., S. Y. Tao, and J. H. Sun, 2010: Ingredients-based heavy rainfall forecasting. Chinese J. Atmos. Sci., 34, 754–766, doi: https://doi.org/10.3878/j.issn.1006-9895.2010.04.08 . (in Chinese)
Zheng, Y. G., Y. J. Lin, W. J. Zhu, et al., 2013: Operational system of severe convective weather comprehensive monitoring. Meteor. Mon., 39, 234–240. (in Chinese)