Dự đoán khối lượng của các sạt lở tiềm năng trong địa hình hẻm núi alpin bằng công nghệ InSAR chuỗi thời gian: một nghiên cứu trường hợp ở lưu vực sông Bạch Long, Trung Quốc

Landslides - Trang 1-17 - 2023
Wangcai Liu1,2, Yi Zhang1,2, Xingmin Meng1,2, Aijie Wang1,2, Yuanxi Li1,2, Xiaojun Su2,3, Kaiqi Ma1,2, Hengyuan Li1,2, Guan Chen1,2
1School of Earth Sciences, Lanzhou University, Lanzhou, China
2Technology & Innovation Centre for Environmental Geology and Geohazards Prevention, Lanzhou University, Lanzhou, China
3College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

Tóm tắt

Độ lớn (vị trí không gian, diện tích và thể tích) của các vụ sạt lở là một tham số quan trọng để ước lượng rủi ro định lượng và ngăn ngừa các nguy cơ sạt lở. Nghiên cứu này đề xuất một phương pháp mới để dự đoán thể tích của các sạt lở tiềm năng trong địa hình hẻm núi alpin bằng cách kết hợp mối quan hệ thực nghiệm giữa thể tích sạt lở (V) với các đặc điểm và công nghệ radar tổng hợp giao thoa (InSAR) ở đông bắc cao nguyên Thanh Hải - Tây Tạng, Trung Quốc. Đầu tiên, một bản quy hoạch lịch sử về các vụ sạt lở với các đặc điểm chi tiết đã được thiết lập thông qua việc xem xét tài liệu và điều tra thực địa. Sau đó, mối quan hệ giữa thể tích và các đặc điểm của các vụ sạt lở đã được phân tích dựa trên hồi quy tuyến tính bậc hai của biến đổi logarit. Cuối cùng, các mối quan hệ của các vụ sạt lở đất xê dịch $$({\text{V}}\text{ = 0.170}\times{\text{L}}^{0.982}\times{\text{W}}^{1.589}\times{\text{H}}^{0.471})$$ và các vụ sạt lở đất bồi tích $$({\text{V}}\text{ = 0.170}\times{\text{L}}^{0.796}\times{\text{W}}^{2.151}\times{\text{H}}^{{0}\text{.048}})$$ đã được xác lập sau khi kiểm tra một số vụ sạt lở. Tốc độ biến dạng mặt đất đã được tạo ra, và 217 vụ sạt lở tiềm năng đã được phát hiện bằng cách sử dụng 47 hình ảnh Sentinel-1A hạ cánh được thu thập từ ngày 11 tháng 1 năm 2020 đến ngày 16 tháng 7 năm 2021, và 40 hình ảnh Sentinel-1A thăng thiên được thu thập từ ngày 11 tháng 1 năm 2020 đến ngày 23 tháng 4 năm 2021. Thông qua các mối quan hệ được thiết lập, tổng thể tích của tất cả các vụ sạt lở đất xê dịch và bồi tích tiềm năng ước lượng lần lượt là 8.77 $$\times$$ 10^8 m3 và 5.74 $$\times$$ 10^8 m3. Nghiên cứu này cung cấp một mối quan hệ thực nghiệm được cải thiện để dự đoán tốt hơn thể tích của các vụ sạt lở tiềm năng trong địa hình hẻm núi alpin. Hơn nữa, nghiên cứu giúp hiểu về sự tiến hóa động lực của các vụ sạt lở tiềm năng trong tương lai bằng cách sử dụng công nghệ InSAR, cung cấp kiến thức khoa học để đánh giá và ngăn ngừa các nguy cơ và rủi ro sạt lở tiềm năng trong lưu vực sông Bạch Long.

Từ khóa

#sạt lở #InSAR #địa hình hẻm núi #ước lượng thể tích #rủi ro thiên tai #khu vực Bạch Long

Tài liệu tham khảo

Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383. https://doi.org/10.1109/TGRS.2002.803792 Bilal M, Xing AG, Zhuang Y, Zhang YB, Jin KP, Zhu YQ, Leng YY (2021) Coupled 3D numerical model for a landslide-induced impulse water wave: a case study of the Fuquan landslide. Eng Geol 290:106209. https://doi.org/10.1016/j.enggeo.2021.106209 Chen M, Wang YS, Liang RF, Yang SC (2018) Research on development and distribution rules of large-scale landslides in Bailongjiang river basin. J Eng Geol 26(02):325–333 (in Chinese). https://doi.org/10.13544/j.cnki.jeg.2017-037 Chen ZL, Ye ZN, Wang ZH, Wang GF, Gao YL, Tian YT (2019) Development characteristics and disaster effect of the Quaternary sediments in the middle and upper reaches of the Bailongjiang River Basin. Hydrogeo Eng Geo 46(2):29–36 (in Chinese). https://doi.org/10.16030/j.cnki.issn.1000-3665.2019.02.05 Colesanti C, Wasowski J (2006) Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Eng Geol 88:173–199. https://doi.org/10.1016/j.enggeo.2006.09.013 Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, vol 247. National Research Council, Transportation and Research Board Special Report, Washington, DC, USA, pp 36–75 (Special Report) Cui YL, Deng JH, Xu C (2018) Volume estimation and stage division of the Mahu landslide in Sichuan Province, China. Nat Hazards 93:941–955. https://doi.org/10.1007/s11069-018-3334-8 Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87. https://doi.org/10.1016/S0013-7952(01)00093-X Dai C, Li WL, Wang D, Lu HY, Xu Q, Jian J (2021) Active landslide detection based on Sentinel-1 data and InSAR technology in Zhouqu County, Gansu Province, Northwest China. J Earth Sci 32:1092–1103. https://doi.org/10.1007/s12583-020-1380-0 Ding C, Feng GC, Liao MS, Tao PJ, Zhang L, Xu Q (2021) Displacement history and potential triggering factors of Baige landslides, China revealed by optical imagery time series. Remote Sens Environ 254:112253. https://doi.org/10.1016/j.rse.2020.112253 Fan XM, Xu Q, Alonso-Rodriguez A, Subramanian SS, Li WL, Zheng G, Dong XJ, Huang RQ (2019) Successive landsliding and damming of the Jinsha River in eastern Tibet, China: prime investigation, early warning, and emergency response. Landslides 16:1003–1020. https://doi.org/10.1007/s10346-019-01159-x Ferretti A, Claudio P, Fabio R (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20. https://doi.org/10.1109/36.898661 Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49:3460–3470. https://doi.org/10.1109/TGRS.2011.2124465 Guo CB, Zhang YS, Li XR, Ren SS, Yang ZH, Wu RA, Jin JJ (2020) Reactivation of giant Jiangdingya ancient landslide in Zhouqu County, Gansu Province, China. Landslides 17:179–190. https://doi.org/10.1007/s10346-019-01266-9 Guthrie RH, Evans SG (2004) Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surf Process Landf 29:1321–1339. https://doi.org/10.1002/esp.1095 Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279:229. https://doi.org/10.1016/j.epsl.2009.01.005 Hong HY, Pradhan B, Xu C, Bui DT (2015) Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. CATENA 133:266–281. https://doi.org/10.1016/j.catena.2015.05.019 Hong HY, Liu JZ, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu AX, Chen W, Ahmad BB (2018) Landslide susceptibility mapping using J48 decision tree with AdaBoost, bagging and rotation forest ensembles in the Guangchang area (China). CATENA 163:399–413. https://doi.org/10.1016/j.catena.2018.01.005 Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:L16302. https://doi.org/10.1029/2008GL034654 Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25(3):231–234. https://doi.org/10.1130/0091-7613(1997)025%3C0231:SFFAMB%3E2.3.CO;2 Jiao Y, Yao ZX, Dong YG (2012) Nanqiao landslide stability and countermeasures in Zhouqu. Gansu Geology 21(1):59–63 (in Chinese) Ko CJ, Wang CL, Wong HK, Lai WC, Kuo CY, Tai YC (2021) Landslide scarp assessments by means of an ellipse-referenced idealized curved surface. Front Earth Sci 9:733413. https://doi.org/10.3389/feart.2021.733413 Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3:247–251. https://doi.org/10.1038/ngeo776 Li YX, Zhang Y, Su XJ, Zhao FM, Liang YW, Meng XM, Jia J (2021) Early identification and characteristics of potential landslides in the Bailong River Basin using InSAR technique. Natl Remote Sens Bull 25(2):677–690 (in Chinese). https://doi.org/10.11834/jrs.20210094 Li YX, Zhang Y, Meng XM, Su XJ, Liu WC, Wang AJ, Guo FY, Liang YW (2023) Deformation process and kinematic evolution of the large Daxiaowan earthflow in the NE Qinghai-Tibet Plateau. Eng Geol 316: 107062. https://doi.org/10.1016/j.enggeo.2023.107062 Lin ML, Chen TW (2020) Estimating volume of deep-seated landslides and mass transport in Basihlan river basin, Taiwan. Eng Geol 278:105825. https://doi.org/10.1016/j.enggeo.2020.105825 Liu W, Yan SX, He SM (2018) Landslide damage incurred to buildings: a case study of Shenzhen landslide. Eng Geol 247:69–83. https://doi.org/10.1016/j.enggeo.2018.10.025 Liu W, Wang DP, Zhou JW, He SM (2019) Simulating the Xinmo landslide runout considering entrainment effect. Environ Earth Sci 78:585. https://doi.org/10.1007/s12665-019-8596-2 Liu XJ, Zhao CY, Zhang Q, Lu Z, Li ZH (2020) Deformation of the Baige Landslide, Tibet, China, revealed through the integration of cross-platform ALOS/PALSAR-1 and ALOS/PALSAR-2 SAR observations. Geophys Res Lett 47:e2019G-e86142G. https://doi.org/10.1029/2019GL086142 Liu XJ, Zhao CY, Zhang Q, Lu Z, Li ZH, Yang CS, Zhu W, Liu ZJ, Chen LQ, Liu CJ (2021) Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Eng Geol 284:106033. https://doi.org/10.1016/j.enggeo.2021.106033 Lombardo L, Opitz T, Ardizzone F, Guzzetti F, Huser R (2020) Space-time landslide predictive modelling. Earth Sci Rev 209:103318. https://doi.org/10.1016/j.earscirev.2020.103318 Ma SY, Qiu HJ, Hu S, Yang D, Liu ZJ (2021) Characteristics and geomorphology change detection analysis of the Jiangdingya landslide on July 12, 2018. China Landslides 18:383–396. https://doi.org/10.1007/s10346-020-01530-3 Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29:687–711. https://doi.org/10.1002/esp.1064 Massey CI, Townsend D, Jones K, Lukovic B, Rhoades D, Morgenstern R, Rosser B, Ries W, Howarth J, Hamling I, Petley D, Clark M, Wartman J, Litchfield N, Olsen M (2020) Volume characteristics of landslides triggered by the Mw 7.8 2016 Kaikōura Earthquake, New Zealand, derived from digital surface difference modeling. J Geophys Res Earth Surf 125:e2019JF005163. https://doi.org/10.1029/2019JF005163 Meng XM, Chen G, Guo P, Xiong MQ, Wasowski J (2013) Research of landslides and debris flows in Bailong River Basin: progress and prospect. Mar Geol Quat Geol 33:1–15 (in Chinese). https://doi.org/10.3724/sp.j.1140.2013.04001 Michel J, Dario C, Marc-Henri D, Thierry O, Ivanna Marina P, Bejamin R (2020) A review of methods used to estimate initial landslide failure surface depths and volumes. Eng Geol 267:105478. https://doi.org/10.1016/j.enggeo.2020.105478 Mu P, Wu WJ, She XS (2012) Stability assessment and treatment for hongtupo landslide in severe disaster area of southern Gansu induced by Wenchuan earthquake. J Eng Geol 20:204–212 (in Chinese) Parker RN, Densmore AL, Rosser NJ, De Michele M, Li Y, Huang RQ, Whadcoat S, Petley DN (2011) Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat Geosci 4:449–452. https://doi.org/10.1038/ngeo1154 Petley D (2012) Global patterns of loss of life from landslides. Geology 40:927–930. https://doi.org/10.1130/G33217.1 Qi TJ, Meng XM, Qing F, Zhao Y, Shi W, Chen G, Zhang Y, Li YJ, Yue DX, Su XJ, Guo FY, Zeng RQ, Dijkstra T (2021) Distribution and characteristics of large landslides in a fault zone: a case study of the NE Qinghai-Tibet Plateau. Geomorphology 379:107592. https://doi.org/10.1016/j.geomorph.2021.107592 Reichenbach P, Rossi M, Malamud B, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91. https://doi.org/10.1016/j.earscirev.2018.03.001 Shano L, Raghuvanshi TK, Meten M (2020) Landslide susceptibility evaluation and hazard zonation techniques – a review. Geoenviron Dis 7:18. https://doi.org/10.1186/s40677-020-00152-0 Su X, Wu WJ, Ye WL, Feng LT (2014) Characteristics and stability assessment of Longjiangxincun landslide in Zhouqu County, Gansu Province. J Lanzhou UnivNat Sci 50(1):7–14, 20 (in Chinese). https://doi.org/10.13885/j.issn.0455-2059.2014.01.013 Sun Q, Zhang L, Ding XL, Hu J, Li ZW, Zhu JJ (2015) Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sens Environ 156:45–57. https://doi.org/10.1016/j.rse.2014.09.029 Tang CX, Tanyas H, van Westen CJ, Tang C, Fan XM, Jetten VG (2019) Analysing post-earthquake mass movement volume dynamics with multi-source DEMs. Eng Geol 248:89–101. https://doi.org/10.1016/j.enggeo.2018.11.010 Thirard G, Thiery Y, Gourdier S, Grandjean G, Maquaire O, François B, Bitri A, Coulibaly S, Lissak C, Costa S (2022) Hydromechanical assessment of a complex landslide through geophysics and numerical modeling: toward an upgrade for the Villerville landslide (Normandy, France). Eng Geol 297:106516. https://doi.org/10.1016/j.enggeo.2022.106516 Tsutsui K, Rokugawa S, Nakagawa H, Miyazaki S, Cheng CT, Shiraishi T, Yang SD (2007) Detection and volume estimation of large-scale landslides based on elevation-change analysis using DEMs extracted from high-resolution satellite stereo imagery. IEEE Trans Geosci Remote Sens 45:1681–1696. https://doi.org/10.1109/TGRS.2007.895209 UNDRR (2019) Global assessment report on disaster risk reduction 2019. Available at https://gar.undrr.org/report-2019.html. Accessed 13 to17 May 2019 Wang YS, Zhao B, Li J (2018) Mechanism of the catastrophic June 2017 landslide at Xinmo Village, Songping River, Sichuan Province, China. Landslides 15:333–345. https://doi.org/10.1007/s10346-017-0927-3 Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138. https://doi.org/10.1016/j.enggeo.2014.03.003 Werner C, Wegmüller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. In, IGARSS 2003. 2003 IEEE Int Geosci Remote Sens Symp Proc (IEEE Cat. No.03CH37477) pp 4362–4364 Xu C, Xu XW, Shen LLL, Yao Q, Tan XB, Kang WJ, Ma SY, Wu XY, Cai JT, Gao MM (2016) Optimized volume models of earthquake-triggered landslides. Sci Rep 6:29797. https://doi.org/10.1038/srep29797 Xu YK, George DL, Kim J, Lu Z, Riley M, Griffin T, de la Fuente J (2021) Landslide monitoring and runout hazard assessment by integrating multi-source remote sensing and numerical models: an application to the Gold Basin landslide complex, northern Washington. Landslides 18:1131–1141. https://doi.org/10.1007/s10346-020-01533-0 Yang XH, Jiang YW, Zhu JC, Ding BY, Zhang WX (2023) Deformation characteristics and failure mechanism of the Moli landslide in Guoye Town, Zhouqu County. Landslides 20:789–800. https://doi.org/10.1007/s10346-022-02019-x Yin KL, Chen LX, Zhang GR (2007) Regional landslide hazard warning and risk assessment. Earth Sci Front 14:85–93. https://doi.org/10.1016/S1872-5791(08)60005-6 Yu JJ, Zheng WJ, Yuan DY, Pang JZ, Liu XW, Liu BY (2012) Late Quaternary active characteristics and slip-rate of Pingding-Huama fault, the eastern segment of Guanggaishan-Dieshan fault zone (West Qinling Mountain). Quat Sci 32:957–967 (in Chinese) Zhang Y, Meng XM, Chen G, Qiao L, Zeng RQ, Chang J (2016) Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides 13:1273–1284. https://doi.org/10.1007/s10346-015-0660-8 Zhang Y, Meng XM, Jordan C, Novellino A, Dijkstra T, Chen G (2018) Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series. Landslides 15:1299–1315. https://doi.org/10.1007/s10346-018-0954-8 Zhang T, Xie S, Fan JH, Huang B, Wang Q, Yuan WL, Zhao HL, Chen JP, Li HZ, Liu G, Tong LQ, Sousa JJ (2021) Detection of active landslides in Southwest China using Sentinel-1 and ALOS-2 data. Procedia Comput Sci 181:1138–1145. https://doi.org/10.1016/j.procs.2021.01.311 Zhang Y, Meng XM, Novellino A, Dijkstra T, Chen G, Jordan C, Li YX, Su XJ (2022) Characterization of pre-failure deformation and evolution of a large earthflow using InSAR monitoring and optical image interpretation. Landslides 19:35–50. https://doi.org/10.1007/s10346-021-01744-z Zhang Q, Xu Q, Wu LZ, Li J (2015) BP neural network model for forecasting volume of landslide group in Nanjiang. Hydrogeol Eng Geol 042:134–139 (in Chinese). https://doi.org/10.16030/j.cnki.issn.1000-3665.2015.01.23 Zhang Y, Meng XM, Dijkstra TA, Jordan CJ, Chen G, Zeng RQ, Novellino A (2020) Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sens Environ 241:111738. https://doi.org/10.1016/j.rse.2020.111738 Zhao C, Lu Z, Zhang Q, de la Fuente J (2012) Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens Environ 124:348–359. https://doi.org/10.1016/j.rse.2012.05.025 Zhao C, Kang Y, Zhang Q, Lu Z, Li B (2018) Landslide identification and monitoring along the Jinsha River catchment (Wudongde Reservoir Area), China, using the InSAR method. Remote Sens 10:993. https://doi.org/10.3390/rs10070993 Zhao B, Wang YS, Chen M, Luo YH, Liang RF, Li J (2019) Typical characteristics of large-scale landslides in the transition belt between the Qinghai-Tibet Plateau and the Loess Plateau. Arab J Geosci 12:470. https://doi.org/10.1007/s12517-019-4612-9