Forecast of the Temperature Regime of the Building Foundation on Alluvial Soils Under Conditions of Cryolithozone
Tóm tắt
A mathematical model is proposed for calculating the temperature regime of the soils of the basement of a residential building on the alluvial soils of Yakutsk in the coastal zone of the Lena River. The model takes into account the air temperature in the building, ambient air temperature, and water filtration depending on the hydrological regime of the river and calculates the change in the soil temperature at the building base to ensure its stability.
Tài liệu tham khảo
L. G. Neradovsky, I. I. Syromyatnikov, A. A. Urban, and V. P. Melchinov, “Experience of complex study of underground injection ice,” Inzh. Izysk., No. 3, 46-53 (2013).
I. I. Syromyatnikov and I. V. Dorofeev, “Peculiarities of soil temperature dynamics in the territory of Yakutsk,” Nauka Obraz., No. 4, 42-45 (2014).
N. V. Torgovkin and V. N. Makarov, “Aggressiveness of seasonally thawed and frozen soils of Yakutsk,” Nauka Obraz., No. 1, 85-89 (2014).
S. I. Zabolotnik, P. S. Zabolotnik, “Dynamics of soil temperature around and under the buildings of the Yakutsk heatelectric generation plant,” Kriosfera Zemli, XX, No. 1, 70-80 (2016).
L. T. Roman, A. A. Tsernant, V. L. Poleshchuk, A. N. Tseeva, and N. I. Levanov, Construction on Alluvial Soils in the Permafrost Zone [in Russian], Ekonomika, Stroitel’stvo, Transport, Moscow (2008).
A. N. Tseeva, “Construction of buildings on alluvial soils in the microdistrict 203 of Yakutsk,” Nauka Tekhnika Yakut., No. 1, 64-66 (2005).
Sundaram Ravi, Gupta Sanjay, and Gupa Sorabh, “Foundations for tall buildings on alluvial deposits-geotechnical aspects,” Proc. Indian Geotechnical Conference IGC-2018, 1-23 (2018).
M. Cubrinovski, I. McCahon, Foundations on Deep Alluvial Soils. Technical Report Prepared for the Canterbury Earthquakes Royal Commission, University of Canterbury, Christchurch (2011).
I. E. Guryanov, “Analysis of city-planning suitability of the territory in the permafrost zone,” Nauka Obraz., No. 4, 60-63 (2008).
L. N. Khrustalev and I. V. Davydova, “Forecast of climate warming and its consideration in assessing the reliability of building foundations on permafrost,” Kriosfera Zemli, XI, No. 2, 68-75 (2007).
Ya. B. Gorelik, “Methods for calculating the deformations of engineering structures caused by heaving of the rocks of the freezing layer,” Kriosfera Zemli, XIV, No. 1, 50-62 (2010).
S. Ya. Lutsky, L. T. Roman, “Technological regulation of the characteristics of permafrost soils at the base of roads,” Osn. Fundam. Mekh. Gruntov, No. 3, 26-30 (2017).
V. I. Vasiliev, M. V. Vasilieva, I. K. Sirditov, S. P. Stepanov, and A. N. Tseeva, “Mathematical modeling of the temperature regime of foundation soils in permafrost conditions,” Vest. MGTU im. N.E. Baumana. Ser. Yestestv. Nauki, No. 1, 142-159 (2017).
A. P. Ammosov, R. N. Shpakova, K. I. Kusatov, and Z. G. Kornilova, “Changes in water levels and slopes of the water surface during hanging dam phenomena on the river Lena,” Izv. Irkutsk. Gos. Univ. Ser. Nauki o Zemle, 28, 3-20 (2019).
I. N. Shatalina, Heat Transfer in the Processes of Freezing and Melting Ice [in Russian], Energoatomizdat, Leningrad (1990).
P. Ya. Polubarinova-Kochina, The Theory of Groundwater Movement [in Russian], Nauka, Moscow (1977).
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer and Dordrecht (2009).
N. G. Musakaev, S. L. Borodin, and D. S. Belskikh, “Mathematical modeling of thermal impact on hydrate-saturated reservoir,” J. Comput. Methods Sci. Eng., 20, 43-51, (2020).
O. Michuta, P. Martyniuk, O. Ostapchuk, and T. Tsvietkova, “On non-isothermal soil water flow considering sorption effect,” JP J. Heat Mass Transf., 18, No. 1, 181-192 (2019). http://dx.doi.org/https://doi.org/10.17654/HM018010181.
K. Baiocchi and O. Capelo, Variational and Quasi-variational Inequalities. Applications to Problems with a Free Boundary, Nauka, Moscow (1988).
P. N. Vabishchevich, Numerical Methods for Solving Problems with a Free Boundary, Mosk. Univ., Moscow (1987).
A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Nauka, Moscow (1977).
Yu. A. Khokholov, M. V. Kaimonov, “Forecast of the controlled temperature regime of soils of the building base in the permafrost zone,” Osn. Fundam. Mekh. Gruntov, No. 2, 31-37 (2020).
M. V. Kaimonov, Yu. A. Khokholov, “Choice of the composition of ice-rock backfilling massifs,” Fiziko-tekhnich. Problemy Razr. Polezn. Iskop., No. 5, 179-188 (2019).
D. A. Kurtener, A. F. Chudnovsky, Calculation and Regulation of the Thermal Regime in Open and Protected Soil [in Russian], Gidrometeoizdat, Leningrad (1969).
A. V. Pavlov, Calculation and Regulation of the Permafrost Regime of the Soil [in Russian], Nauka, Novosibirsk (1980).
R. I. Gavriliev, Thermophysical Properties of Natural Environment Components in Permafrost: Reference manual, reference book, Izd-vo SO RAN, Novosibirsk (2004).
G. M. Feldman, A. S. Tetelbaum, N. I. Shender et al., Handbook on Forecasting the Temperature Regime of Soils in Yakutia, Inst. Merzlotovedeniya SO RAN SSSR, Yakutsk (1988).
S. P. Varlamov, Yu. B. Skachkov, and P. N. Skryabin, Temperature Regime of Soils in Permafrost Landscapes of Central Yakutia [in Russian], Izdatel’stvo Instituta Merzlotovedeniya SO RAN, Yakutsk (2002).
A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1983).
A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer [in Russian], Editorial URSS, Moscow (2003).
K. W. Morton, D. F. Mayers, Numerical Solution of Partial Differential Equations, an Introduction, Cambridge University Press (2005).
J. LeVeque Randall, Finite Difference Methods for Differential Equations, University of Washington (2005).
J. Taler and P. Duda, Solving Direct and Inverse Heat Conduction Problems, Springer (2006).