Forced electrostriction by constraining polarization switching enhances the electromechanical strain properties of incipient piezoceramics

NPG Asia Materials - Tập 9 Số 1 - Trang e346-e346 - 2017
Chang Won Ahn1, Gangho Choi1, Ill Won Kim1, Jae‐Shin Lee2, Ke Wang3, Younghun Hwang4, Wook Jo4
1Department of Physics and EHSRC, University of Ulsan, Ulsan, Republic of Korea
2School of Materials Science and Engineering, University of Ulsan, Ulsan, Republic of Korea
3State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People’s Republic of China
4School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhang, S.-T., Kounga, A. B., Aulbach, E., Ehrenberg, H. & Rödel, J. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007).

Jo, W., Dittmer, R., Acosta, M., Zang, J., Groh, C., Sapper, E., Wang, K. & Rödel, J. Giant electric-field-induced strains in lead-free piezoceramics for actuator applications - status and perspective. J. Electroceram. 29, 71–93 (2012).

Hong, C.-H., Kim, H.-P., Choi, B.-Y., Han, H.-S., Son, J. S., Ahn, C. W. & Jo, W. Lead-free piezoceramics – where to move on? J. Materiomics 2, 1–24 (2016).

Li, F., Jin, L., Xu, Z. & Zhang, S. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014).

Ahn, C. W., Hong, C.-H., Choi, B.-Y., Kim, H.-P., Han, H.-S., Hwang, Y., Jo, W., Wang, K., Li, J.-F., Lee, J.-S. & Kim, I. W. A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors. J. Kor. Phys. Soc. 68, 1481–1494 (2016).

Zhong, W. L., Wang, Y. G., Zhang, P. L. & Qu, B. D. Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B 50, 698–703 (1994).

Bobnar, V., Kutnjak, Z., Pirc, R. & Levstik, A. Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate. Phys. Rev. B 60, 6420–6427 (1999).

Jo, W., Schaab, S., Sapper, E., Schmitt, L. A, Kleebe, H.-J., Bell, A. J. & Rödel, J. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2TiO3-6 mol% BaTiO3 . J. Appl. Phys. 110, 074106 (2011).

Choi, S.-Y., Jeong, S.-J., Lee, D.-S., Kim, M.-S., Lee, J.-S., Cho, J. H., Kim, B. I. & Ikuhara, Y. Gigantic electrostrain in duplex structured alkaline niobates. Chem. Mater. 24, 3363–3369 (2012).

Lee, D. S., Lim, D. H., Kim, M. S., Kim, K. H. & Jeong, S. J. Electric field-induced deformation behavior in mixed Bi0.5Na0.5TiO3 and Bi0.5(Na0.75K0.25 0.5TiO3-BiAlO3 . Appl. Phys. Lett. 99, 062906 (2011).

Lee, D.-S., Jeong, S. J., Kim, M. S. & Koh, J. H. Electric field induced polarization and strain of Bi-based ceramic composites. J. Appl. Phys. 112, 124109 (2012).

Groh, C., Franzbach, D. J., Jo, W., Webber, K. G., Kling, J., Schmitt, L. A., Kleebe, H. J., Jeong, S.-J., Lee, J.-S. & Rödel, J. Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics. Adv. Funct. Mater. 24, 356–362 (2013).

Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T. & Nakamura, M. Lead-free piezoceramics. Nature 432, 84–87 (2004).

Hussain, A., Rahman, J. U., Ahmed, F., Kim, J.-S., Kim, M.-H., Song, T.-K. & Kim, W.-J. Plate-like Na0.5Bi0.5TiO3 particles synthesized by topochemical microcrystal conversion method. J. Eur. Ceram. Soc. 35, 919–925 (2015).

Zhang, H., Xu, P., Patterson, E., Zang, J., Jiang, S. & Rödel, J. Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2TiO3-based lead-free incipient piezoceramics. J. Eur. Ceram. Soc. 35, 2501–2512 (2015).

Jiang, C., Zhou, X., Zhou, K., Chen, C., Luo, H., Yuan, X. & Zhang, D. Grain oriented Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant strain response derived from single-crystalline Na0.5Bi0.5TiO3-BaTiO3 templates. J. Eur. Ceram. Soc. 36, 1377–1383 (2016).

Lee, D.-S., Jeong, S.-J., Park, E.-C. & Song, J.-S. Characteristic of grain oriented (Bi0.5Na0.5TiO3-BaTiO3 ceramics. J. Electroceram. 17, 505–508 (2006).

Ang, C. & Yu, Z. High, purely electrostrictive strain in lead-free dielectrics. Adv. Mater. 18, 103–106 (2006).

Wang, X., Xu, C.-N., Yamada, H., Nishikubo, K. & Zheng, X.-G. Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics. Adv. Mater. 17, 1254–1258 (2005).

Zuo, R., Qi, H., Fu, J., Li, J., Shi, M. & Xu, Y. Giant electrostrictive effects of NaNbO3-BaTiO3 lead-free relaxor ferroelectrics. Appl. Phys. Lett. 108, 232904 (2016).

Zhang, S.-T., Kounga, A. B., Jo, W., Jamin, C., Seifert, K., Granzow, T., Rödel, J. & Damjanovic, D. High-strain lead-free antiferroelectric electrostrictors. Adv. Mater. 21, 4716–4720 (2009).

Ullah, A., Ahn, C. W., Hussain, A., Lee, S. Y., Lee, H. J. & Kim, I. W. Phase transitions and large electric field-induced strain in BiAlO3-modified Bi0.5(Na,K)0.5TiO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 10, 1174–1181 (2010).

Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

Kuwata, J., Uchino, K. & Nomura, S. Electrostrictive coefficients of Pb(Mg1/3Nb2/3O3 ceramics. Jpn. J. Appl. Phys. 19, 2099–2103 (1980).

Kang, D. H., Lee, Y. H. & Yoon, K. H. Phase transition, dielectric and electrostrictive behaviors in (1 – x)PYN– xPMN. J. Mater. Res. 13, 984–989 (1998).

Sheets, S. A., Soukhojak, A. N., Ohashi, N. & Chiang, Y.-M. Relaxor single crystals in the (Bi1/2Na1/2 1−xBaxZryTi1−yO3 system exhibiting high electrostrictive strain. J. Appl. Phys. 90, 5287–5295 (2001).

Zhang, S.-T., Yan, F., Yang, B. & Cao, W. Phase diagram and electrostrictive properties of Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 ceramics. Appl. Phys. Lett. 97, 122901 (2010).

Hao, J., Bai, W., Li, W., Shen, B. & Zhai, J. Phase transitions, relaxor behavior, and electrical properties in (1−x)(Bi0.5Na0.5TiO3–x(K0.5Na0.5NbO3 lead-free piezoceramics. J. Mater. Res. 27, 2943–2955 (2012).

Han, H.-S., Jo, W., Kang, J.-K., Ahn, C.-W., Won Kim, I., Ahn, K.-K. & Lee, J.-S. Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18 1/2TiO3 lead-free ceramics. J. Appl. Phys. 113, 154102 (2013).

Li, F., Jin, L., Xu, Z., Wang, D. & Zhang, S. Electrostrictive effect in Pb(Mg1/3Nb2/3O3-xPbTiO3 crystals. Appl. Phys. Lett. 102, 152910 (2013).

Jiménez, R., Amorín, H., Ricote, J., Carreaud, J., Kiat, J. M., Dkhil, B., Holc, J., Kosec, M. & Algueró, M. Effect of grain size on the transition between ferroelectric and relaxor states in 0.8Pb(Mg1/3Nb2/3O3−0.2PbTiO3 ceramics. Phys. Rev. B 78, 094103 (2008).

Hoshina, T., Furuta, T., Yamazaki, T., Takeda, H. & Tsurumi, T. Grain size effect on dielectric properties of Ba(Zr,Ti)O3 ceramics. Jpn. J. Appl. Phys. 51 09LC04 (2012).