Forced electrostriction by constraining polarization switching enhances the electromechanical strain properties of incipient piezoceramics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhang, S.-T., Kounga, A. B., Aulbach, E., Ehrenberg, H. & Rödel, J. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007).
Jo, W., Dittmer, R., Acosta, M., Zang, J., Groh, C., Sapper, E., Wang, K. & Rödel, J. Giant electric-field-induced strains in lead-free piezoceramics for actuator applications - status and perspective. J. Electroceram. 29, 71–93 (2012).
Hong, C.-H., Kim, H.-P., Choi, B.-Y., Han, H.-S., Son, J. S., Ahn, C. W. & Jo, W. Lead-free piezoceramics – where to move on? J. Materiomics 2, 1–24 (2016).
Li, F., Jin, L., Xu, Z. & Zhang, S. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014).
Ahn, C. W., Hong, C.-H., Choi, B.-Y., Kim, H.-P., Han, H.-S., Hwang, Y., Jo, W., Wang, K., Li, J.-F., Lee, J.-S. & Kim, I. W. A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors. J. Kor. Phys. Soc. 68, 1481–1494 (2016).
Zhong, W. L., Wang, Y. G., Zhang, P. L. & Qu, B. D. Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B 50, 698–703 (1994).
Bobnar, V., Kutnjak, Z., Pirc, R. & Levstik, A. Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate. Phys. Rev. B 60, 6420–6427 (1999).
Jo, W., Schaab, S., Sapper, E., Schmitt, L. A, Kleebe, H.-J., Bell, A. J. & Rödel, J. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2TiO3-6 mol% BaTiO3 . J. Appl. Phys. 110, 074106 (2011).
Choi, S.-Y., Jeong, S.-J., Lee, D.-S., Kim, M.-S., Lee, J.-S., Cho, J. H., Kim, B. I. & Ikuhara, Y. Gigantic electrostrain in duplex structured alkaline niobates. Chem. Mater. 24, 3363–3369 (2012).
Lee, D. S., Lim, D. H., Kim, M. S., Kim, K. H. & Jeong, S. J. Electric field-induced deformation behavior in mixed Bi0.5Na0.5TiO3 and Bi0.5(Na0.75K0.25 0.5TiO3-BiAlO3 . Appl. Phys. Lett. 99, 062906 (2011).
Lee, D.-S., Jeong, S. J., Kim, M. S. & Koh, J. H. Electric field induced polarization and strain of Bi-based ceramic composites. J. Appl. Phys. 112, 124109 (2012).
Groh, C., Franzbach, D. J., Jo, W., Webber, K. G., Kling, J., Schmitt, L. A., Kleebe, H. J., Jeong, S.-J., Lee, J.-S. & Rödel, J. Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics. Adv. Funct. Mater. 24, 356–362 (2013).
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T. & Nakamura, M. Lead-free piezoceramics. Nature 432, 84–87 (2004).
Hussain, A., Rahman, J. U., Ahmed, F., Kim, J.-S., Kim, M.-H., Song, T.-K. & Kim, W.-J. Plate-like Na0.5Bi0.5TiO3 particles synthesized by topochemical microcrystal conversion method. J. Eur. Ceram. Soc. 35, 919–925 (2015).
Zhang, H., Xu, P., Patterson, E., Zang, J., Jiang, S. & Rödel, J. Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2TiO3-based lead-free incipient piezoceramics. J. Eur. Ceram. Soc. 35, 2501–2512 (2015).
Jiang, C., Zhou, X., Zhou, K., Chen, C., Luo, H., Yuan, X. & Zhang, D. Grain oriented Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant strain response derived from single-crystalline Na0.5Bi0.5TiO3-BaTiO3 templates. J. Eur. Ceram. Soc. 36, 1377–1383 (2016).
Lee, D.-S., Jeong, S.-J., Park, E.-C. & Song, J.-S. Characteristic of grain oriented (Bi0.5Na0.5TiO3-BaTiO3 ceramics. J. Electroceram. 17, 505–508 (2006).
Ang, C. & Yu, Z. High, purely electrostrictive strain in lead-free dielectrics. Adv. Mater. 18, 103–106 (2006).
Wang, X., Xu, C.-N., Yamada, H., Nishikubo, K. & Zheng, X.-G. Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics. Adv. Mater. 17, 1254–1258 (2005).
Zuo, R., Qi, H., Fu, J., Li, J., Shi, M. & Xu, Y. Giant electrostrictive effects of NaNbO3-BaTiO3 lead-free relaxor ferroelectrics. Appl. Phys. Lett. 108, 232904 (2016).
Zhang, S.-T., Kounga, A. B., Jo, W., Jamin, C., Seifert, K., Granzow, T., Rödel, J. & Damjanovic, D. High-strain lead-free antiferroelectric electrostrictors. Adv. Mater. 21, 4716–4720 (2009).
Ullah, A., Ahn, C. W., Hussain, A., Lee, S. Y., Lee, H. J. & Kim, I. W. Phase transitions and large electric field-induced strain in BiAlO3-modified Bi0.5(Na,K)0.5TiO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 10, 1174–1181 (2010).
Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).
Kuwata, J., Uchino, K. & Nomura, S. Electrostrictive coefficients of Pb(Mg1/3Nb2/3O3 ceramics. Jpn. J. Appl. Phys. 19, 2099–2103 (1980).
Kang, D. H., Lee, Y. H. & Yoon, K. H. Phase transition, dielectric and electrostrictive behaviors in (1 – x)PYN– xPMN. J. Mater. Res. 13, 984–989 (1998).
Sheets, S. A., Soukhojak, A. N., Ohashi, N. & Chiang, Y.-M. Relaxor single crystals in the (Bi1/2Na1/2 1−xBaxZryTi1−yO3 system exhibiting high electrostrictive strain. J. Appl. Phys. 90, 5287–5295 (2001).
Zhang, S.-T., Yan, F., Yang, B. & Cao, W. Phase diagram and electrostrictive properties of Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 ceramics. Appl. Phys. Lett. 97, 122901 (2010).
Hao, J., Bai, W., Li, W., Shen, B. & Zhai, J. Phase transitions, relaxor behavior, and electrical properties in (1−x)(Bi0.5Na0.5TiO3–x(K0.5Na0.5NbO3 lead-free piezoceramics. J. Mater. Res. 27, 2943–2955 (2012).
Han, H.-S., Jo, W., Kang, J.-K., Ahn, C.-W., Won Kim, I., Ahn, K.-K. & Lee, J.-S. Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18 1/2TiO3 lead-free ceramics. J. Appl. Phys. 113, 154102 (2013).
Li, F., Jin, L., Xu, Z., Wang, D. & Zhang, S. Electrostrictive effect in Pb(Mg1/3Nb2/3O3-xPbTiO3 crystals. Appl. Phys. Lett. 102, 152910 (2013).
Jiménez, R., Amorín, H., Ricote, J., Carreaud, J., Kiat, J. M., Dkhil, B., Holc, J., Kosec, M. & Algueró, M. Effect of grain size on the transition between ferroelectric and relaxor states in 0.8Pb(Mg1/3Nb2/3O3−0.2PbTiO3 ceramics. Phys. Rev. B 78, 094103 (2008).